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Abstract. In this Big Data era, many large-scale and complex graphs
have been produced with the rapid growth of novel Internet applications
and the new experiment data collecting methods in biological and chem-
istry areas. As the scale and complexity of the graph data increase explo-
sively, it becomes urgent and challenging to develop more efficient graph
processing frameworks which are capable of executing general graph algo-
rithms efficiently. In this paper, we propose to leverage GPUs to acceler-
ate large-scale graph mining in the cloud. To achieve good performance
and scalability, we propose the graph summary method and runtime sys-
tem optimization techniques for load balancing and message handling.
Experiment results manifest that the prototype framework outperforms
two state-of-the-art distributed frameworks GPS and GraphLab in terms
of performance and scalability.

Keywords: Graph mining - GPGPU -+ Graph partitioning - Load
balancing - Cloud computing

1 Introduction

In recent years, various graph computing frameworks [1,3-5] have been proposed
for analyzing and mining large graphs especially web graphs and social graphs.
Some frameworks achieve good scalability and performance by exploiting distrib-
uted computing. For instance, Stratosphere [6] is a representative graph process-
ing framework based on the MapReduce model [7]. However, recent research has
shown that graph processing in the MapReduce model is inefficient [8,9]. To
improve performance, many distributed platforms adopting the vertex-centric
model [5] have been proposed, including GPS [4], GraphLab [2] and Power-
Graph [10]. To ensure performance, these distributed platforms require a cluster
or cloud environment and good graph partitioning algorithms [1].

Previously, we proposed the gGraph [12] platform which is a non-distributed
platform that can utilize both CPUs and GPUs (Graph Processing Units) effi-
ciently in a single PC. Compared to CPUs, GPUs have higher hardware paral-
lelism [15] and better energy efficiency [14]. However, non-distributed platforms
are unable to process large-scale graphs by utilizing powerful distributed com-
puting/cloud computing which is widely available. Therefore, in this work, we
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

J. Wan et al. (Eds.): CloudComp 2016, SPNCE 2016, LNICST 197, pp. 12-21, 2018.
https://doi.org/10.1007/978-3-319-69605-8_2



Efficient Graph Mining in the Cloud 13

focus on developing methods and techniques to build an efficient distributed
graph processing framework on hybrid CPU and GPU systems. Specifically, we
develop these major methods and techniques: (1) A graph-summary method
to optimize graph computing efficiency; (2) A runtime system for load balanc-
ing and communication reducing; (3) A distributed graph processing system
architecture supporting hybrid CPU-GPU platforms in the cloud. We developed
a prototype system called HGraph (that is, graph processing on hybrid CPU
and GPU platforms) for evaluation. HGraph is based on MPI (Message Pass-
ing Interface), and integrates the vertex-based programming model, the BSP
(Barrier Synchronous Parallel) computing model and the CUDA GPU execu-
tion model. We evaluate the performance of HGraph with both realworld and
synthetic graphs in a virtual cluster on Amazon EC2 cloud. The preliminary
results demonstrate that HGraph outperforms evaluated distributed platforms.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the system overview. Section4 presents the details of
the design and implementation. The experiment methodology is shown in Sect. 5
and the result is analyzed in Sect. 6. Section 7 concludes this work.

2 Related Work

The related work can be categorized into graph processing frameworks targeting
dynamic graphs and static graphs. The design and architecture of frameworks
are fundamentally different depending on the type of the graph.

Realworld graphs are mostly dynamic which are evolving over time. For
example, the structure of a social network is ever-changing: vertices and edges
change when a user add a new friend or delete an old friend. Frameworks for
dynamic graph processing generally adopt the streaming/incremental comput-
ing technique in order to handle the variation of the graph and return results
in realtime or near realtime. Several work propose to take a snapshot of the
graph periodically and then process it based on historical results [16,17]. The
graph snapshots they process are complete graphs. In contrast, other frameworks
propose to process only the changed portion of graphs in an incremental fashion
[18-20]. However, not all graph algorithms can be expressed into the incremental
manner, so the applications of such incremental frameworks are limited.

By taking a snapshot of a dynamic graph at a certain time, a dynamic graph
can be viewed as a series of static snapshots. Most of the existing graph process-
ing frameworks focus on dealing with static graphs (i.e. snapshots). These frame-
works can be grouped into non-distributed ones and distributed ones depending
on the number of computing nodes they can control. GraphChi [1], Ligra [11],
gGraph [12] and Totem [13] are representative non-distributed platforms. The
former two platforms are pure-CPU platforms. GraphChi proposed the Paral-
lel Sliding Windows (PSW) method and the compact graph storage method to
overlap the computation and I/O to improve performance. Ligra is specifically
designed for shared-memory machines. Both gGraph and Totem run on hybrid
CPU and GPU systems and achieve better performance and energy efficiency
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than pure-CPU based platforms. Anyways, non-distributed platforms cannot uti-
lize distributed computing nodes to handle extra-scale graphs. In contrast, the
performance of distributed platforms can scale up by utilizing more computing
nodes in the cluster. Distributed platforms can be further classified into synchro-
nous platforms and asynchronous platforms according to their computing model.
Pregel [5] and GPS [4] are typical distributed synchronous platforms. Pregel and
GPS adopt the vertex-centric model, in which a vertex kernel function will be
executed in parallel on each vertex. GraphLab [2] and PowerGraph [10] are rep-
resentative distributed asynchronous platforms. They follow the asynchronous
computing model such that graph algorithms may converge faster. However,
research showed that asynchronous execution model will reduce parallelism [12].
Therefore the selection between synchronous and asynchronous model is a trade-
off between algorithmic convergence time and performance.

3 System Overview

In this section, we discuss the design principle of the HGraph, followed by a
system architecture overview. The detailed optimization techniques of HGraph
will be presented in the next section.

3.1 Design Rules

The primary design goals of HGraph include good performance, scalability and
programmability.

— HGraph exploits GPU computing for good performance. GPU processors are
advantageous for their high throughput [21], energy efficiency [22], and mem-
ory bandwidth, and have been widely used in various application domains
[15]. HGraph can benefit from GPUs’ high throughput to process fine-grained
computing tasks in graph processing. In addition, HGraph adopts fully in-
memory computing for better performance.

— HGraph utilizes distributed computing in the cloud for good scalability. The
computing resource in clouds are elastic which can scale according to users’
needs. Since HGraph adopts in-memory computing, we need to ensure that
there are enough nodes such that the computing resource (i.e. CPU & GPU
processors) and memory resource are adequate.

— HGraph follows the vertex-centric programming model for good programma-
bility. In this model, a specific vertex kernel function for a graph algorithm
is executed in parallel on each vertex. Many existing graph processing frame-
works [5,11-13] follow this model.

3.2 System Architecture Overview

The system architecture of HGraph is presented in Fig.1. The master node
consists of three major components: a graph partitioner, a task scheduler and a
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Fig. 1. System architecture of HGraph

global load balancer. The graph partitioner splits the graph into partitions and
sends them to slave nodes. The task scheduler maintains a list of pending tasks
and dispatches these tasks to slave nodes for execution. The global load balancer
is part of the two-level load balancing unit in HGraph. The master node assigns
initial load to slave nodes. Then the global load balancer can adjust the load on
slave nodes if load imbalance happens during the execution.

In each slave node, there is a CPU worker and a GPU worker, respectively.
The discrete GPU communicates with the host CPU through the PCI-e bus. The
CPUs and GPUs inside a node work in the Bulk-Synchronous Parallel (BSP)
[24] model to execute the update function in the vertex-centric programming
model. However, heterogeneous processors (eg. CPUs and GPUs) may take dif-
ferent time for computation. As a result, completed processors need to wait for
processors lagging behind before the synchronization, which degrades system
performance. The local load balancer is in charge of balancing the load between
the CPU and the GPU to solve such issue. The local load balancer and the global
load balancer form a two-level load balancer. Finally, there is a massage handler
which handles both intra-node and inter-node messages.

4 Design and Implementation

In this section, we present the methods and techniques proposed in this work.
The graph summary method is introduced first, followed by the runtime system
techniques for load balancing and message handling.

4.1 Graph Summary Method

In the vertex-centric model, partial or all vertices with their edges will be visit
once in each iteration for many graph algorithms. Therefore the execution time is
proportional to the number of vertices and edges (O(|V|+|E|)), and is dominated
by the number of edges |E| in most cases since normally |E| is much bigger than
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Fig. 2. Graph pruning transforms

the number of vertices |V| in graphs. We define four pruning transformations 7T;
of graph G, as shown in Fig. 2.

Ty is a transform that removes the vertices and their in-edges whose out-
degree equals zero. T, is a transform that removes the vertices and their out-
edges whose in-degree equals zero. T3 is a transform that removes the vertices and
their out-edges whose in-degree and out-degree both equal 1. T} is a transform
that removes one edge from a triangle. By applying one of T; or a series of T;
onto the G, we can get a graph summary G’ of smaller size.

G =Ti(Q) (1)

The selection of T; depends on algorithms and query conditions. Queries using
graph algorithms can be categorized into full queries and conditional queries:

— Full queries: using graph algorithms to identify the maximum, minimum value
or all value under certain criteria. For instance, “search for the top 10 vertices
with the highest PageRank”, or “find out all communities in the graph”.

— Partial queries: using graph algorithms to search for some solution. For
instance, “search for 10 vertices with PageRank larger than 5”7, or “find out
10 communities whose sizes are larger than 50”.

Accordingly, graph summary G’ can be used in two ways:

— As the initialization data: in full query, we can use graph summary G’ to
initialize G to make graph algorithms converge faster [23].

— As the input for graph algorithms: in partial query, we can directly run graph
algorithms on graph summary G’ to get results in a shorter time.

The time for pruning vertices and edges to get graph summary is a one-time
process, so the time cost can be amortized by later long-running time of itera-
tive graph algorithms. Besides, some graph algorithms have similar algorithmic
pattern such that they can share a common graph summary. Therefore, the time
cost to produce graph summary can be further amortized.
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4.2 Runtime System Techniques

There are two major components in the runtime system: the two-level load bal-
ancer and the message handler, as shown in Fig. 1 in Sect. 3. The local load bal-
ancer in each slave node exploits the adaptive load balancing method in gGraph
[12] to balance the load between CPU processors and GPU processors inside
the node. The global load balancer in HGraph is able to adjust the load (eg.
number of vertices and edges) on slave nodes to balance their execution time. It
calculates the load status of slave nodes based on the monitoring data and tries
to migrate appropriate load from heavily loaded nodes to less loaded nodes.

We extended the message handler in gGraph for HGraph’s distributed com-
puting. In HGraph, the message handler in each slave node maintains one outbox
buffer for every other slave nodes and an inbox buffer for itself. Messages to other
slave nodes will be aggregated based on the slave node id and the vertex id using
algorithm operators then put into the corresponding outbox buffer. The inbox
buffer is used for receiving incoming messages.

5 Experiment Methodology

In this section, we elaborate the graph algorithms, graph data, and the experi-
mental software and hardware settings.

5.1 Graph Algorithms

We use single source shortest path (SSSP), connected components (CC), and
PageRank (PR) to evaluate the performance of HGraph, as shown in Table 1.

Single source shortest path finds the shortest path from a given source vertex
to all connected vertices. Connected component is used to detect regions in
graphs. PageRank is an algorithm proposed by Google to calculate probability
distribution representing the likelihood that a web link been clicked by a random
user. Their vertex functions are listed in Table 1.

Table 1. Graph Algorithms

Algorithms | Vertex function

SSSP V.path < MiNcecinBdges(v) (€.50urce.path + e.weight)
CcC v.component <« MaTecedges(v) (€.0ther.component)
PR v.rank < 0.15 4+ 0.85 x ZeEinEdges(v) e.source.rank

5.2 Workloads

We use both real-world graphs and synthetic graphs in the RMAT model [25] to
evaluate HGraph. The RMAT graphs are generated with parameters (A, B, C) =
(0.57,0.19,0.19) and an average degree of 16. The graphs are listed in Table 2.
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Table 2. Summary of the workloads (Legend: M for million, B for billion)

Abbr. | Graph |Vertices| | |[Edges| | Direction | Type
G1 Twitter 2010 61.6M 1.5B Undirected | Social
G2 Com-Friendster | 65.6M 1.8B Undirected | Social

G3 Uk-2007-d 106.0M | 3.7B Directed Web
G4 RMAT?29 512.0M |8.0B Undirected | Synthetic
GbH RMAT30 1.0B 16.0B | Undirected | Synthetic

5.3 Software and Hardware Settings

We developed a system prototype named HGraph on top of MPICH2. We con-
ducted the experiments on Amazon EC2, using 32 g2.2xlarge instances. Each
g2.2xlarge instance consists of 1 Nvidia GPU, 8 vCPU, 15GB memory and
60 GB SSD disk. Each GPU has 1536 CUDA cores and 4 GB DDR memory.
We compare the performance and scalability of HGraph with two distributed
frameworks GraphLab and GPS.

6 Results and Analysis

In this section, we present the comparison on performance and scalability
of HGraph with GPS and GraphLab. Figure3 compares the performance of
HGraph, GPS and GraphLab running the CC, SSSP, and PR algorithm. All

225, [ GPS I GraphLab [BEl HGraph |

200

Million traversed edges per second (MTEPS)

CcC SSSP PR
Algorithms

Fig. 3. Performance comparison of platforms



Efficient Graph Mining in the Cloud 19

—=— GPS —e— GraphLab —— HGraph |

Normalized performance
N
PR

1<
16 18 20 22 24 26 28 30 32

Number of computing nodes

Fig. 4. Scalability comparison of platforms

three platforms are distributed but only HGraph can utilize GPUs in com-
puting nodes and gain additional computing power. The result is the average
performance in million traversed edges in one second (MTEPS) on all graphs.
In general, platforms achieve better performance in graph analytical algorithms
(CC & PR) than in the graph traversal algorithm (SSSP) since CC & PR have
higher parallelism than SSSP. HGraph outperforms GPS and GraphLab for two
reasons: (1)the graph summary method and the runtime system optimizations;
(2) the ability to utilize GPUs for additional power.

Figure4 compares the scalability of three platforms by increasing the num-
ber of computing nodes from 16 to 32 at a step of 4 machines, and calculat-
ing the normalized performance. All platforms exhibit significant scalability.
HGraph achieves the best scalability while GraphLab achieves the lowest scal-
ability. Adding one or more computing nodes increases the resource including
processors, memory and disk I/O bandwidth, and reduces the partitioned work-
load on each computing node. However, more computing nodes also cause the
graph to be split into more partitions, potentially increasing communication
messages. HGraph implements the message aggregation technique therefore it is
less affected by the increased communications, hence the better scalability.

7 Conclusion

This paper introduces a general, distributed graph processing platform named
HGraph which can process large-scale graphs very efficiently by utilizing both
CPUs and GPUs in distributed cloud environment. HGraph exploits a graph
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summary method and runtime system optimization techniques for load balanc-
ing and message handling. The experiments show that HGraph outperform two
state-of-the-art distributed platforms GPS and GraphLab in terms of perfor-
mance and scalability.
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