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Abstract. With networking became prevalent, the amount of data to
be stored and managed on networked servers rapidly increases. Mean-
while, with the improvement of awareness of data privacy, the user’s
sensitive data is usually encrypted before uploading them to the cloud
server. The searchable public-key encryption provides an efficient mech-
anism to achieve data retrieval in encrypted storage. Therefore, it is a
critical technique on promoting secure and efficient cloud storage. Unfor-
tunately, only few the existing schemes are secure to resist outside key-
word guessing attacks. In this paper, we propose two efficient search-
able public-key encryption schemes with a designated tester (dPEKS).
One is a basic dPEKS, where the dPEKS ciphertext indistinguishability
is proved without the random oracle. Meanwhile, the basic scheme is
secure to resist the outside KGA since it satisfies the property of trap-
door indistinguishability. Comparing with the existing dPEKS schemes
which use expensive pairing computation, our scheme is more efficient
since we only need multi-exponentiation. Another is an enhanced dPEKS
scheme. With the sender’s identity is kept secret from server, this scheme
can provide stronger security.

Keywords: Searchable encryption · Trapdoor indistinguishability ·
Keywords guessing attacks · Cloud storage · Security analysis

1 Introduction

With ubiquitous network, the cloud storage offers great convenience to users.
More and more users enjoy the benefits of cloud storage services by outsourcing
their data into the cloud server. To protect data privacy, a user has to encrypt the
sensitive data before uploading them into the server. However, this incurs a new
problem that the network server cannot perform searches over encrypted data.
When users want to retrieve the encrypted data, he has two straight options:
downloading the entire encrypted data or sending his private keys to the cloud
server. Obviously, the first approach requires high consumption of bandwidth and
the second approach deviates original intention (namely protect data privacy).
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

J. Wan et al. (Eds.): CloudComp 2016, SPNCE 2016, LNICST 197, pp. 184–195, 2018.

https://doi.org/10.1007/978-3-319-69605-8_17



Secure Searchable Public-Key Encryption for Cloud Storage 185

In 2000, Song et al. first introduced the concept of searchable encryption [1].
The searchable encryption allows the network server to search over encrypted
data without decryption. It does not leak any information about the data and
query. Therefore, searchable encryption is a critical technique promoting efficient
and secure cloud storage. The searchable encryption has been developed into
two different types. The first type is the symmetric searchable encryption (SSE
in short) which requires that a sender is securely granted a secret key from
the intended receiver. It suffers from risks of key leakage in management and
distribution [1]. The second type is the searchable public-key encryption with
keyword search (PEKS in short), which allows any one seeing the receiver’s
public key to encrypt documents.

The PEKS provides an efficient mechanism to achieve data retrieval in
encrypted storage. In a PEKS scheme, the sender generates the searchable
ciphertext of keywords with receiver’s public key and stores it to server. To
retrieval the encrypted data associated with a given keyword, the receiver cre-
ates a search request (trapdoor) with the keyword and his private key. Receiving
a trapdoor, the cloud server can perform a test whether some encrypted data
matches the trapdoor and returns corresponding encrypted data to receiver.

In 2004, Boneh et al. proposed the first searchable public-key encryption
with keyword search scheme [2]. Their scheme requires constructing the secure
transport channel to protect trapdoors. Since building a secure channel is usu-
ally expensive, this requirement limits applications of the searchable public-key
encryption scheme.

To overcome this obstacle, in 2008, Baek et al. proposed secure Channel Free
Public Key Encryption with Keyword Search scheme [3](SCF-PEKS in short),
which removes the secure channel requirement. Nevertheless, Yau et al. showed
that this scheme is insecure [4] for the following reason. With outside keyword-
guessing attacks (outside KGA), an outside adversary can reveal encrypted key-
words if he obtains a trapdoor in channel.

Hereafter, in [15], the searchable public key encryption with keyword search
scheme with a designated tester (dPEKS in short) is proposed. In this scheme,
only a designated server can test whether given trapdoor matches the ciphertext.

Until now, most of the dPEKS schemes pay more attention to improving the
security against this attacks [5–11]. Only a few schemes [12–15] can effectively
resist outside KGA.

In addition, the KGA launched by a server is called inside KGA. Since the
correct requirement of scheme and small keyword space, it is impossible to
construct a searchable public-key encryption(dPEKS or PEKS) scheme secure
against inside KGA under the original framework [2]. Very recently, based on a
new framework, Peng et. al. proposed a online/offline ciphertext retrieval scheme
[16] is secure against inside KGA.

In this paper, based on the IBE [17], we propose two efficient dPEKS schemes,
namely a basic dPEKS scheme (BdPEKS) and an enhanced dPEKS (EdPEKS).
For the basic scheme, we prove that our construction satisfies ciphertext indistin-
guishability under q-ABDHE assumption. Meanwhile, we prove that it satisfies
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trapdoor indistinguishability. Therefore, our BdPEKS scheme is secure against
outside keyword guessing attacks. Comparing with the existing dPEKS schemes
which use expensive pairing computation, our basic scheme is more efficient since
we only need multi-exponentiation. For our enhanced dPEKS scheme (EdPEKS),
we analysis its security. In EdPEKS, if a server wants to launch the KGA, it must
guess both the sender’s identity and keywords. Therefore, the EdPEKS scheme
has stronger security to resist the inside KGA. Lastly, we show a comparison
between the other PEKS (dPEKS) schemes and our schemes in terms of func-
tionalities and performances.

2 Preliminaries

In this section, we review the construction of dPEKS, which is defined in [15].
Meanwhile, we also describe the definition of dPEKS ciphertexts indistinguisha-
bility and trapdoor indistinguishability with game between the adversary F and
the challenger G. Here, the dPEKS ciphertext is an encrypted list of keywords.

2.1 Definition of dPEKS and Security Model

2.1.1 Definition of dPEKS
As stated in the previous section, the dPEKS is a mechanism which can achieve
efficient ciphertext retrieval. Specially, a dPEKS scheme can be defined as
follows.

Definition 1. A dPEKS scheme consists of the following four PPT (proba-
bility polynomial-time) algorithms, (Setup, KeyGen, dPEKS, dTrapdoor,
dTest).

Setup: Let n be a security parameter. This algorithm takes n as input, then it
outputs a set public parameter PP.

KeyGen: Taking the public parameter PP as input, this algorithm creates the
receiver’s a public/private key pair (Pr, Kr) and the server’s a public/private
key pair (Ps, Ks).

dPEKS: Taking the public parameter PP, the receiver’s public key Pr, the
server’s public key Ps and a keyword w as input, this algorithm returns a
dPEKS ciphertext Cw corresponding to w.

Trapdoor: Taking PP, the receiver’s public/private key (Pr,Kr), the server’s
public key Ps and a keyword w′ as input, this algorithm generates a trapdoor
Tw of w.

dTest: Taking a dPEKS ciphertext Cw of keyword w, PP, a trapdoor Tw′ and
the server’s private key Ks as input, this algorithm returns ’yes’ if w′ = w,
and otherwise outputs ‘no’.



Secure Searchable Public-Key Encryption for Cloud Storage 187

2.1.2 Security Model
Security of dPEKS ciphertext
As described in [15], in dPEKS, the security for a dPEKS ciphertext requires
that a dPEKS ciphertext satisfies indistinguishability against a chosen plaintext
attack (C-IND-CPA in short). Specially, the C-IND-CPA guarantees that (1)
a server cannot distinguish between the dPEKS ciphertexts of two challenge
keywords w0 and w1 its choice if he has not obtained their trapdoor. (2) an
outside adversary (including a receiver) who can generate the trapdoors of any
keyword (excluding challenge keywords) cannot distinguish between the dPEKS
ciphertext of w0 and w1 its choice if he has not obtained the server’s private key.
Formalized, the C-IND-CPA can be defined with the following two games.

Game1. Here, G is a challenger and F1 is a malicious server.

Setup: F1 generates (Ps, Ks) as his public/private key pair. G generates (Pr,
Kr) as receiver’s public/private key pair. The tuples (Ps, Ks, Pr) are given
to F1, and the tuples (Pr, Kr, Ps) are given to G.

Phase 1 Trapdoor queries: F1 queries many keywords w ∈ {0, 1}∗ to obtain
trapdoors Tw from G. G adaptively responses F1 with Tw as trapdoor gen-
eration oracle.

Challenge: F1 chooses the keywords pair (w0, w1) as a challenge. Here, the
restriction is that w0 and w1 have not been queried to obtain the trapdoors
Tw0 and Tw1 . Receiving w0 and w1, G chooses an random b ∈ {0, 1} and
generates the ciphertext Cwb

of wb, and returns it to F1.
Phase 2 Trapdoor queries: In this phase, F1 can still queries w to obtain its

trapdoor as phase 1. If the w �= w0, w1, G adaptively responses F1 with Tw

as phase 1, otherwise stop.
Outputs: F1 outputs c′ ∈ {0, 1}. If c′ = c, then F1 wins Game1.

Let advC−ind−cpa
F1

= |Pr(c′ = c) − 1
2 | denote the advantage probability that

F1 wins the game1.

Game2. Here, G is a challenger and F2 an outside adversary (including receiver).

Setup: F2 is given Pr and Kr as receiver’s public and private key, respectively.
G (as server) generates (Ps, Ks) as his public/private key pair. The tuples
(Pr, Kr, Ps) are given to F2 , the tuples (Ps, Ks, Pr ) are given to G. Here,
F2 can generate the trapdoor of any keyword since he holds Kr.

Challenge: F2 chooses the keywords pair (w0, w1) as the challenges. Here,
the restrictions is that F2 did not previously ask the dTest oracle for the
trapdoors of w0 and w1. Receiving w0 and w1, G chooses c ∈ {0, 1} and
generates the ciphertext Cwc

of wc, and returns it to F2.
Output: F2 outputs c′ ∈ {0, 1}. If c′ = c, then F2 wins Game2.

Let advC−ind−cpa
F2

= |Pr(c′ = c)− 1
2 | denotes the advantage probability that

F2 wins the Game2.

Definition 2. For the polynomial-time F1 and F2, a dPEKS scheme is said to
be C-IND-CPA secure if advC−ind−cpa

F1,2
= |Pr(c′ = c) − 1

2 | is negligible.
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Remark. In the Game2, the adversary is considered to be an receiver who can
generate the trapdoor of keywords. If the outside adversary is not an receiver,
we only need to the Game1 to define the C-IND-CPA. In fact, receiver’s ability
to discriminate between the dPEKS ciphertexts of keywords won’t arise harm-
ful effects, since the dPEKS ciphertexts should be send to receiver. Based on
this reason, the adversaries are considered to be server and outside attacker
(excluding receicer) when we prove the C-IND-CPA of BdPEKS.

Security of Trapdoor
As stated [15], in a dPEKS scheme, if the adversary (excluding the receiver and
the server) cannot distinguish between the trapdoors of w0 and w1, it is said
that a dPEKS scheme satisfies trapdoor indistinguishability against an adaptive
chosen plaintext attack (T-IND-CPA). The dPEKS scheme can stand against
outside keyword-guessing attacks successfully if it is T-IND-CPAT secure. The
trapdoor indistinguishability can be defined with the following Game3.

Game3. Here, G is a challenger and F3 is an outside adversary.
Setup: Running Setup and KeyGen, the public parameter PP, the receiver’s

key pair (Pr, Kr) and the server’s key pair (Ps, Ks) are generated. PP, Pr

and Ps are given to F3 while Ks and Kr are kept secret from F3.
Phase 1 Trapdoor queries: F3 queries many keywords w ∈ {0, 1}∗ to obtain

trapdoors Tw from G. G adaptively responses F3 with trapdoor Tw of w.
Challenge: F3 chooses (w0, w1) as challenge keywords and send them to G.

Here, the restriction is that w0 and w1 have not been queried to obtain the
trapdoors Tw0 and Tw1 , and that F3 did not previously ask for Tw0 and Tw1

in phase 1. Receiving (w0, w1), G chooses an random c ∈ {0, 1} and generates
its trapdoor Twc

, and returns it to F3.
Phase 2 Trapdoor queries: In this phase, F3 can still query the trapdoor of

w as phase 1, where w �= w0, w1. G can adaptively response F3 with Tw as
oracle.

Outputs: F3 outputs b′ ∈ {0, 1}. If c′ = c, then F3 wins Game3
Let advT−ind−cpa

F3
= |Pr(c′ = c) − 1

2 | denote the advantage probability that
F3 wins the Game3.

Definition 3. For the polynomial-time F3, it is said to be T-IND-CPA if
advT−ind−cpa

F3
= |Pr(c′ = c) − 1

2 | is negligible.

2.1.3 Complexity Assumptions
Let G, GT be multiplicative cyclic groups of prime order p.

The security of our system is based on the decisional augmented
bilinear Diffie-Hellman exponent assumption (decisional ABDHE)[17]. First,
we review the q-ABDHE problem, which is defined as follows. Let
e be a bilinear map: G × G → GT . Given a tuple in G2q+2:
L′ =

(
g̃, g̃γq+2

, g, gγ , gγ2
, . . . , gγq

, gγq+2
, . . . , gγ2q)

as input, required to output
e(g, g̃)γq+1

.
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Following the q-ABDHE problem, the truncated version of q-ABDHE prob-
lem is defined as: Given a tuple L =

(
g̃, g̃q+2, g, g1, . . . , gq

)
, required to output

e(g, g̃)γq+1
, where g̃i = g̃γi

and gi = gγi

.
Clearly, the truncated q-ABDHE problem is hard if the q-ABDHE problem

is hard. Corresponding to the truncated q-ABDHE problem, the decisional trun-
cated q-ABDHE is introduced as follow.

An algorithm G outputs b ∈ {0, 1} with the advantages ε in solving the
truncated decision q-ABDHE if |Pr[G(L, e(gq+1, g̃)] − Pr[G(L, E)]| ≥ ε, where
the probability is over the random choice of γ in Zp, the random choice of
generators g, g̃ in G, the random choice of E ∈ GT the random bits consumed
by G.

Meanwhile, we also assume the discrete logarithm problem (DLP) assumption
holds over G and GT .

3 Our Construction

3.1 Basic dPEKS Scheme (BdPEKS)

In this section, we construct a basic searchable public-key encryption scheme
with a designated tester (BdPEKS). With the G, GT as specified above, let H0:
{0, 1}∗ → Z∗

p be a hash function. Our scheme is built as follows.

– Setup: Taking two multiplicative cyclic groups G, GT with prime order
p, a bilinear map e, this algorithm generates public parameters PP =
(p,G,GT , g, β, e,H0), where g, β ∈ G and g is a generator of G.

– KeyGen (PP ): Taking a, b and g ∈ PP as input, this algorithm outputs the
receiver’s public key and private key Pr = ga and Kr = a, and the server’s
public key and private key Ps = gb and Ks = b.

– dPEKS (Pr, w): Taking PP, Pr and a keyword w (denote H(w) = h) as
input, the sender chooses a random u ∈ Z∗

p computes the dPEKS ciphertext
as follows:
C = (C1, C2, C3) =

(
e(β, g)u, e(g, g)u, Pu

r · g−uh
)

– Trapdoor(Kr, Ps, w′): Taking Kr = a, Ps ,a keyword w′ (denote H(w′) =
h′) and a random v ∈ Z∗

p as input, the receiver computes the trapdoor of w′

as follows:
T = (T1, T2) =

(
P v

s , T2 = gv · (βP−1
s )

1
a−h′

)
.

– dTest: Given a dPEKS ciphertext C and a trapdoor T , the server performs
searching operation by checking C1 = Cb

2 · e(C3, T2T
−(b−1)
1 ). If the equation

holds, it returns 1; Otherwise returns 0;

3.1.1 Correctness of BdPEKS
The BdPEKS scheme is correct if the trapdoor T = (T1, T2) is valid for w′ and
the dPEKS ciphertext C = (C1, C2, C3) is valid for w.

With T = (T1, T2)=
(
P v

s , gv · (βP−1
s )

1
a−h′

)
and C = (C1, C2, C3) =(

e(β, g)u, e(g, g)u, Pu
r · g−uh

)
, the correctness of the dTest algorithm
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is verified as follows: T2 · T−b−1

1 = (βP−1
s )

1
a−h′ , e(C3, T2T

−b−1

1 ) =
e(gu(a−h), β

1
a−h′ )e(gu(a−h), g

−b
a−h′ ) = e(gu, β)e(gu, g−b).

Therefore, if w = w′, then the equation C1 = Cb
2 · e(C3, T2T

−b−1

1 ) is holds.

3.1.2 Security of BdPEKS
Security of dPEKS Ciphertext
As stated in Remark of Sect. 2.1, the adversaries are considered to be a server
or an outside attacker (excluding receiver).

Theorem 1. For a server or an outside attacker (excluding receiver), if the
truncated decision assumption holds over (G,GT , e), the BdPEKS scheme is
C-IND-CPA secure.

Proof: We assume that the adversary F1 is the malicious server or an out-
side attacker, with an advantages ε breaking our scheme. We can construct an
algorithm G which can solve the decisional truncated q-ABDHE problem on
(G,GT , e) with the advantage (ε − 2/p).

Denote gi = gαi

and g̃i = g̃αi

, G is given a random decision q-ABDHE
challenge (g̃, g̃q+2, g, g1, · · · , gq, E), where E is e(gq+1, g̃) or a random element of
GT .

– Setup: G generates a random polynomial d(x) ∈ Zp[x] of degree q. Then G
can compute β = gd(α) since (g, gα, · · · , gαq

). Then the public parameters
are PP = (q, p, e,G,GT , g, β,H), where H:{0, 1}∗ → Z∗

p is a hash function
(not as oracle). Let Pr = g1 be G’s public key. Choose b ∈ Z∗

p uniformly at
random, then let F1’s public key and private key be Ps = gb and Ks = b.

– Phase 1 Trapdoor queries: The F1 makes queries of keywords w ∈ {0, 1}∗

to obtain trapdoors Tw from G. If F1 query the trapdoor of w (h = H(w)),
G responds as follows. G computes the (q − 1)-degree polynomial DT (x) =
(d(x)−d(h))/(x−h). Taking two random r′, r′′ ∈ Z∗

p , he computes T1 = P r′
s

and T2 = gr′′
gDT (α). As an result, he sets T = (T1, T2). Clearly, there is a

unknown random r such that r′ = r
α−h and r′′ = r′+ d(h)−b

α−h . Thus T1 = P
r

α−h
s

and T2 = gr′′
gDT (α) = g

r
α−h (βg−b)

1
α−h appears to F1 be correctly distributed.

– Challenge: F1 chooses the keywords pair (w0, w1) as the challenge and send
to G. Denote hc = H(wc) (c ∈ {0, 1}). Here, the restriction is that w0 and w1

have not been queried to obtain the trapdoors Tw0 and Tw1 .
Taking the polynomial DT (x), d(x) and d′(x) = xq+2, G computes D′(x) =

(d′(x) − d′(hc))/(x − hc), where the form of D′(x) is D′(x) = xq+1 + D(x).
Then G picks c ∈ {0, 1} and computes the ciphertext as follows.
Let C = (C1, C2, C3), then C2 = E · e(g̃, gD′(α)), C3 = g̃(d

′(α)−d′(hc))

C1 = e(C3, g
DT (α)) · C

d(hc)
2

Let u = (logg g̃)D′(α), if E = e(gq+1, g̃) then
C1 = e(β, g)u, C2 = (g, g)u, C3 = gu(α−hc). Since g, g̃ are uniformly random,
the u = (logg g̃)D′(α) is uniformly random. As an result, the C = (C1, C2, C3)
is a valid dPEKS ciphertext.
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– Phase 2 Trapdoor queries: F1 makes trapdoor queries, for any keyword
w �= w0, w1, G responds as in Phase 1.

– Guess: Finally, F1 outputs it’s result c′. If c′ = c, G outputs 1(indicating
E = e(gq+1, g̃)), otherwise outputs 0.

Clearly, if E = e(gq+1, g̃), F1 can guess c correctly with the probability
1/2 + ε. When E is uniformly random and independent element of GT , the
probability that F1 guesses c correctly is 2/p. Meanwhile, the probability that
G solves the truncated decision q-ABDHE correctly without F1’s help is 1/2. As
an result, G solves the truncated decision q-ABDHE with 1/2 + ε − 2/p − 1/2 =
ε − 2/p. This completes the proof of C-IND-CPA secure.

Security of Trapdoor

Theorem 2. Our BdPEKS scheme is T-IND-CAP secure.

Proof: The adversary F2 is assumed to be a malicious outside attacker. We
show that F2 can not distinguish Whether two trapdoors were created by the
same keyword.

Firstly, in our scheme, the trapdoor is T1 = P v
s , T2 = gv · (βP−1

s )
1

a−h′ (h′ =
H(w′)) where v is an random element in Z∗

p . The trapdoor is updated every time
due to the difference of v we selected.

Due to the Kr = a is kept secret from F2, the F2 can not known (βP−1
s )

1
a−h′ .

In fact, let β = gk (k ∈ Z∗
p is some unknown value), then T2 = gv ·(βP−1

s )
1

a−h′ =

g
k−b

a−h′ +v. With v is randomly selected from Z∗
p , T2 is an random element in G.

Thus T2 is independent of keyword w′ from F2’s view. As an result, our scheme
satisfies the trapdoor indistinguishability.

3.2 Our Enhanced dPEKS Scheme (EdPEKS)

Base on the BdPEKS scheme, we construct an enhanced dPEKS scheme
(EdPEKS). Our EdPEKS scheme has stronger security. Especially, the EdPEKS
scheme can resist inside keyword guessing attacks from the untrusted server if
the sender’s identities are kept secret from cloud server. The EdPEKS scheme
is constructed as follows.

Let G, GT be multiplicative cyclic groups of prime order p. Let H0: {0, 1}∗ →
Z∗

p and H1: {0, 1}∗ → G be two hash function.

– Setup: Take two multiplicative cyclic groups G, GT with prime order
p, a bilinear map e, this algorithm generates public parameters PP =
(p,G,GT , g, e,H0,H1), where g ∈ G is a generator of G. Additionally, let
Sid ∈ {0, 1}∗ be the sender’s identity.

– KeyGen (PP): Taking a, b and g ∈ PP as input, this algorithm outputs the
receiver’s public key and private key Pr = ga and Kr = a, and the server’s
public key and private key Ps = gb and Ks = b.

– dPEKS (Pr, Ps, Sid, w): Taking PP, Pr, Ps, Sid and a keyword w as input,
the sender chooses a random u ∈ Z∗

p computes the dPEKS ciphertext as
follows:



192 R. Xie et al.

C=(C1, C2, C3)=
(
e(Hid, Ps)u, e(Ps, Ps)u, Pu

r · g−uh
)

where Hid = H1(Sid) and h = H0(w).
– Trapdoor (Kr, Ps, S′

id, w′): Taking Kr = a, Ps, S′
id, a keyword w′ and a

random v ∈ Z∗
p as input, the receiver computes the trapdoor of w′ as follows:

T = (T1, T2) = (P v
s , gv(H ′

idP
−1
s )

1
a−h′ ), where H ′

id = H1(S′
id) and h′ = H0(w′)

– dTest: Taking the dPEKS ciphertext C and trapdoor T , the server performs
searching operation by checking C1 = C2 · e(C3, T

b
2T−1

1 ). If this equation
holds, it returns 1; Otherwise returns 0;

3.2.1 Correctness
The correctness of the EdPEKS scheme can be verified by the following equation.

With the trapdoor T1 = P v
s , T2 = gv(H ′

idP
−1
s )

1
a−h′ and the dPEKS cipher-

text C1 = e(Hid, Ps)u, C2 = e(Ps, Ps)u, C3 = Pu
r ·g−uh, the server can compute:

e(C3, T
b
2T−1

1 ) = e(Pu
r g−uh, (H ′

idP
−1
s )

b
a−h′ ) = e

(
gu(a−h),H

′ b
a−h′

id

)
e
(
gu(a−h),

g
−b2

a−h′
)

Clearly, if H ′
id = Hid and w′ = w, the equation C1 = C2 ·e(C3, T

b
2T−1

1 ) holds.

3.2.2 Seacurity Analysis
In this section, we analysis the security of EdPEKS scheme.

Theorem 3. Our EdPEKS scheme is the dPEKS ciphertext indistinguishable
secure.

Proof: Firstly, in EdPEKS scheme, the dPEKS ciphertext C3 = Pu
r · g−uH0(w).

Clearly, it is identical with the C3 of Basic dPEKS scheme. If the adversary (the
server or a outside attacker) can break the C-IND-CPA security of EdPEKS
scheme, there exist an adversary can break the C-IND-CPA security of BdPEKS
scheme.

Secondly, although the receiver may generate a trapdoor T , P
1

a−H0(w′)
s and

g
1

a−H0(w′) , he cannot perform a test since the server’s private key Ks is kept
secret from him. Therefore, the EdPEKS scheme is C-IND-CPA secure even if
the adversary is receiver.

Theorem 4. Our EdPEKS scheme is trapdoor indistinguishable secure.

Proof: In EdPEKS scheme, the trapdoor T = (P v
s , gv(H ′

idP
−1
s )

1
a−H0(w′) ).

Clearly, the only difference between the trapdoor of EdPEKS scheme and the
trapdoor of Basic scheme is that the β is replaced by H ′

id. With the same analy-
sis of theorem 3.2, it’s easy to see that the EdPEKS scheme is also T-IND-CPA
secure.

3.2.3 Inside KGA Analysis
As stated in [14], the inside KGA works as follows. Given a valid trapdoor,
the server chooses an appropriate keyword from the keyword space and then
uses it generate a dPEKS ciphertext. With his private key, the server can test
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whether the keyword matches the trapdoor. Since the keyword space is small,
the guessing-then-testing procedure is efficient to find a correct keyword.

In our EdPEKS scheme, the dPEKS ciphertext is
(
e(Hid, Ps)u, e(Ps, Ps)u,

Pu
r · g−uH(w)

)
. The EdPEKS scheme is secure against inside KGA due to the

following reasons.

(1) It is easy to see that the server cannot obtain the sender’s identity Hid from
e(Hid, Ps)u even if he holds Ks and the trapdoor T .

(2) The server cannot obtain Hid from T2 = gv · (H ′
idP

−1
s )

1
a−H(w′) since the

receive’s Kr is kept secret from him.
(3) The server cannot perform a test for a valid trapdoor if he has not the

dPEKS ciphertext.

As a result, to launch KGA, he must guess the appropriate keyword and identity
to computes a dPEKS ciphertext. With the space (including the identity space
and the keyword space) becoming larger, the guessing-then-testing procedure is
inefficient.

4 Performance Analysis

We analyze the performance of our schemes in terms of dPEKS ciphertext, the
trapdoor and computation cost. This analysis includes a comparison between
the other schemes.

Let Pt and Et be the computational cost of a bilinear pairing operation and
an exponentiation (or multi-exponentiation) over a bilinear group, respectively.
Let lG, lGT

, lp and lH be the size of an element in G, GT , Z∗
p and the hash value,

respectively. Briefly, the size of dPEKS ciphertext and trapdoor denote ZC, ZT.
In addition, the computation cost of trapdoor, ciphertext and test denote TrC,
CiC and TeC.

In the Basic dPEKS scheme, by caching e(β, g), e(g, g), generating dPEKS
ciphertext (C1, C2, C3) does not need the pairing operation. Thus generating
(C1, C2, C3) only needs two exponentiations in GT and one multi-exponentiation
in G. Similar, in EdPEKS scheme, generating (C1, C2, C3) need one pairing oper-
ation, one exponentiation in GT and one multi-exponentiation in G. In Basic
dPEKS scheme and EdPEKS scheme, generating the trapdoor need one expo-
nentiation and one multi-exponentiation in G.

The Table 1 shows that only [16] and our EdPEKS scheme can resist inside
KGA. Compared with others, our schemes are efficient.

Table 1. A comparison of various schemes

Schemes ZC ZT TrC TeC CiC Outside KGA Inside KGA

[15] lG + lH 2lG 2Et Pt + 2Et Pt + 2Et Yes No

[3] lG + lH lG Et Pt + Et Pt + Et No No

[16] 2lG 2lG + 2lp 2Et 2Pt + 2Et 2Et Yes Yes

[14] 3lG + 2lGT
+ ls lG + lp Et 4Pt + 3Et + tv 3Pt + 6Et + ts Yes No

[13] 2lG + lGT
2lG Et 3Pt + Et Pt + 4Et Yes No

BdPEKS lG + 2lGT
2lG 2Et Pt + Et 3Et Yes No

EdPEKS lG + 2lGT
2lG 2Et Pt + Et Pt + 3Et Yes Yes
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5 Conclusion

In this paper, we proposed two dPEKS scheme, namely BdPEKS scheme and
EdPEKS scheme. In BdPEKS scheme, we prove that the dPEKS ciphertext is C-
IND-CAP secure without random oracle. Our BdPEKS scheme is secure against
outside keyword-guessing attacks. The BdPEKS scheme is efficient because it
only need multiplication and exponentiation to create a dPEKS ciphertext or a
trapdoor. Under the original framework of [2], it is not possible to construct an
dPEKS (PEKS) secure against inside KGA. To solve this problem, we proposed
an enhanced dPEKS scheme (EdPEKS). With the sender’s identity are kept
secret from server, the EdPEKS scheme is secure resist inside KGA. In our
EdPEKS, the trusted third party is removed. Both security analysis and compare
results showed that the EdPEKS scheme is secure and efficient.
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