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Abstract. A novel ring signature is constructed based on Garg-Gentry-Halevi
(GGH) graded encoding system which is a candidate multilinear maps from
ideal lattice, and we prove its security in standard model. Under the GGH graded
decisional Diffie-Hellman (GDDH) assumption, the proposed ring signature
guarantees the anonymity of signer. At the same time, the ring signature is the
existentially unforgeable against adaptive chosen message attack under the GGH
graded computational Diffie-Hellman (GCDH) assumption.
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1 Introduction

The notion of ring signature was first formally introduced by Rivest et al. in 2001 [1].
In a ring signature, any member in the ring can sign on behalf of the whole ring. As a
result, the verifier is convinced that this signature is from a ring in which the signer is a
member, but it is hard to know which member in the ring actually generated the
signature. On the definition of security for ring signature, Bendery et al. [2] pointed out
that the definition of security was too weak in [1], and gave a strongest definitions of
both anonymity and unforgeability depending on the security strength for ring signa-
ture. Due to this unique anonymity and flexibility (such as, no managers, no setup
procedure of the ring and no revocation procedure), the ring signature can be applied
for a variety of purposes which have been suggested in previous works, for example,
anonymously leaking secrets [3] and anonymous authentication in Ad-hoc networks
and wireless sensor networks [4–6].

With the introduction of the concept of ring signature, a large of ring signature
scheme and its variants have been constructed based on intractability of the discrete
logarithm or large integer factorization, such as the standard ring signature schemes [1–
6], identity-based ring signature schemes [7], linkable ring signature schemes [8] and
so on. With the advent of quantum computer era, all the above schemes will no longer
be secure, because the quantum algorithm designed by Shorn can efficiently solve the
classical problems in number theory. (e.g. large integer factorization, discrete logarithm
problem.) In order to design a post-quantum secure ring signature, there are a few of
ring signature schemes with security based on standard lattice problems which is
considered infeasible even under the quantum computer [9–12]. As most of them made
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use of the hash-and-sign method based on the (Gentry-Peikert-Vaikuntanathan) GPV
strong trapdoors [13], a hidden structure was added to the underlying lattice, which was
considered an important price to pay from a theoretical point of view [14]. Recently,
Melchor et al. [15] presented an efficient ring signature by means of adapting
Lyubashevsky’s signature from ideal lattice, in which the strongest security defined in
[2] was achieved by using a weak trapdoor as Lyubashevsky’s signature [16]. How-
ever, the proof of its security was in the oracle model.

In this paper, we construct a new ring signature based on GGH’s graded encoding
system which is an candidate multilinear maps from ideal lattice [17]. Our main
contribution from a theoretical point of view is that the proposed ring signature scheme
is the first one to be based on multilinear maps and no ring signature was until now
based on it. Under the graded decisional Diffie-Hellman (GDDH) assumption and
grade computational Diffie-Hellman (GCDH) assumption, the new ring signature
scheme guarantees the anonymity of signer even if the secret key of the signer is
exposed and holds the existential unforgeability against adaptive chosen message
attack in the standard model, respectively.

The rest of this paper is organized as follows. In Sect. 2, we introduce the back-
ground about multilinear maps and the algorithms in the GGH framework, full domain
hash from multilinear maps and the definition of ring signature and its security model.
In Sect. 3, the new ring signature scheme based on multilinear maps is described in
details, and Sect. 4 proves its security including the anonymity and unforgeability.
Finally, in Sect. 5, we summarize this paper.

2 Preliminaries

2.1 Notation

We use Z to denote the set of integer, and R ¼ Z½X�=ðXnþ 1Þ denote the integer
polynomial ring where Ui2½N� is a power of 2. For a large prime q 2 Z, Rq ¼
Zq½X�=Xnþ 1 ¼ R=qR denotes the quotient ring of integer polynomial mod q. Let I
denote an ideal of ring R, then R=I denotes a quotient ring generated by the ideal I
while feþ I : e 2 Rg denotes the representative of coset of the quotient ring R=I. By
convention, we use bold letters for vectors (e.g. a or A). In addition, for a positive
integer k, ½k� denotes f1; � � � kg.

2.2 Multilinear Maps and the GGH Graded Encoding System

Boneh and Silverberg (BS) first proposed the concept of multilinear maps and
described many cryptographic applications in 2003 [18]. For the groups G1 and G2

which have the same prime order, the definition of BS is that if a map e : Gn
1 ! G2 is

an n-multilinear maps it should satisfy the following properties:

(1) If a1; . . .; an 2 Z and x1; . . .; xn 2 G1, then eðxa11 ; . . .; xann Þ ¼ eðx1; . . .; xnÞPi2½n�ai ;
(2) The map e is non-degenerate. In other words, if g 2 G1 is a generator of G1, then

eðg; . . .; gÞ is a generator of G2.
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Although several efficient cryptographic primitives were constructed based on the
concept of multilinear maps, Boneh and Silverberg also pointed out that to instantiate
this kind of multilinear maps on Weil pair or Tate pair was infeasible. In the past
decade, how to achieve cryptographically useful multilinear maps is an important open
problem. Recently, Garg, Gentry and Halevi (GGH) give a candidate in EURO-
CRYPT’ 2013 [17]. They construct an approximate multilinear maps from ideal lattice,
which is also known as GGH graded coding system. In a k-level GGH candidate, as
long as iþ j� k, the encodings on i-level and encodings on j-level can make multi-
plication to obtain the encoding on iþ j-level. Of course, the product should be smaller
than the modulus q. By multiplication in an iterative manner, the encodings on k-level
can be obtained. This approach is different from the BS view of multilinear maps where
a k-linear maps should allow the simultaneous multiplication of k source group ele-
ments into one target group element. Here, we briefly describe the GGH framework as
follows, and the details can be referred to [17].

Abstractly, in GGH graded encoding system, the exponentiation samp in multi-
linear groups family is viewed as an encoding of an element a on the i-level. At the
same time, the GGH replaces the groups defined in BS with an encoding set associated
with ideal lattice. Specifically, for a ring R, the GGH graded encoding system includes

a system of sets S ¼ fSai � f0; 1g� : i 2 ½0; n�; a 2 Rg, where SðaÞi consists of the i-level

encodings of a and the sets Si ¼
S

a S
ðaÞ
i . The k-GGH framework includes several

algorithms, which are as follow:

Instance generation: InstGen ð1k; 1kÞ. The instance-generation procedure takes as
input the security parameter k and an integer Bj ¼ re�encð1; bjÞ that denotes the level
number, and outputs parameters ðparams; pztÞ where params ¼ fn;m; q; y; fxigi; sg is
the public parameters of the GGH k-graded encoding system as above, and pzt is a k-
level “zero-testing parameter”. To ensure the security of graded encoding system, the
parameters related to params is chosen carefully. Generally, for a quotient ring Rq, the
approximate setting is n ¼ ~Oðkk2Þ, q ¼ 2n=k and m ¼ Oðn2Þ. In addition, in the public
parameter the “randomizers” xi are just random encodings of zero while the parameter
y is a level-one encoding of 1 (correctly, encoding of 1þ I).

Sampling level-zero encodings: sampðparamsÞ. It takes as input params, the ran-
domized algorithm outputs a level-zero encoding d of the coset aþ I, such as d 2 Sa0.
Essentially, according to a discrete Gaussian distribution with an appropriate variance,
one can randomly choose a short vector d 2 R, which can be viewed as a small
representative of the coset aþ I because of its very small coefficients compared to the
modulus q.

Encodings at higher levels: encðparams; i; dÞ. Given the input parameters params and

a level-zero encoding d 2 Sa0, the level-i encoding u 2 SðaÞi of d can be obtained by
multiplying d with yi, where y included in params is a level-1 encoding of 1.

Re-randomization: re-Randðparams; i; uÞ. This algorithm re-randomizes the encod-

ing u 2 SðaÞi to the same level and obtains another encoding u� 2 SðaÞi , which involves
adding a random Gaussian linear combination of the level-i encodings of zero in
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params (e.g.xi), whose noisiness “drowns out” the initial encoding. Moreover, for any

two encodings u1, u2 2 SðaÞi whose noise bound is at most b, the output distribution of
re-Randðparams; i; u1Þ and re-Randðparams; i; u2Þ is statically the same.

Addition: addðparams; u1; u2Þ and Negation negðparams; u1Þ. Given any two level-i

encodings u1 2 SðaÞi and u2 2 SðbÞi , we can obtain an adding encoding

u ¼ u1þ u2 2 SðaþbÞ
i , while the output of algorithm negðparams; u1Þ belongs to Sð�aÞi .

Multiplication: multðparams; u1 2 Sai ; u2 2 Sbj Þ. Given any two encodings u1 2 Sai
and u2 2 Sbj , we have multiplying encoding u ¼ u1 � u2 2 Sða�bÞiþ j as long as iþ j\k.

Zero-testing: isZeroðparams; pzt; uÞ. Given a level-k encoding u, if ½pzt � u�q
�
�
�

�
�
�� q3=4

where :k k denotes the length of vector, it is denoted that u belongs to the set S0k , and the
algorithm outputs 1 and 0 otherwise. Note that the encoding is additively homomor-
phic, so we can test quality between encodings by subtracting them and comparing to
zero.

Extraction: extðparams; pzt; uÞ. Given a level-k encoding u, the algorithm extracts a
“canonical” and “random” representative of coset from the encoding u. Namely,
extðparams; pzt; uÞ outputs (say) K 2 f0; 1gk, such that:

(a) For any two level-k encodings u1; u2 2 Sak , extðparams; pzt; u1Þ ¼
extðparams; pzt; u2Þ with overwhelming probability.

(b) For a 2 R and any encoding u 2 Sak , the distribution of extðparams;pzt; uÞ is
statistically uniform over f0; 1gk.

For ease of description, let re-encðparams; i; dÞ denotes the function of
re-Randðparams; i; encðparams; i; dÞÞ where d is a result of a call to sampðparamsÞ. In
addition, we also omit params arguments that are provided to every algorithm in GGH
framework as above. For instance, we will write sampðÞ to instead of sampðparamsÞ.

2.3 GCDH/GDDH Hard Assumptions

Now, we describe the hard assumptions in GGH framework: Graded Computational
Diffie-Hellman problem (GCDH) and Graded Decisional Diffie-Hellman problem
(GDDH), which are the basis of the security of our new ring signature in this paper.

Definition 1 (GCDH/GDDH). On parameters k; n; q; k, a challenger runs
InstGenð1k; 1kÞ to get the public parameters ðparams; pztÞ of the GGH graded encoding
system, and it calls sampðÞ several times to pick the random e0; � � � ek . Then,
(1) Given params, pzt, re-encð1; e0Þ; � � � ; re-encð1; ekÞ, the goal of the GCDH is to

find a level-k encoding of
Q

i2½0;k� ei.
(2) Given params, pzt, re-encð1; e0Þ; � � � ; re-encð1; ekÞ and a random level-k encoding

u re� encðk; sampðÞÞ, the goal of the k-GDDH is to distinguish between the
level-k encoding re� encðk;Qi2½0;k� eiÞ and the random encoding u.
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In [17], an extensive cryptanalysis has been done to prove the security of GGH
graded encoding system, and it shows that the GCDH/GDDH problems are hard for
any polynomial-time algorithm to solve. Recently, some effective cryptography
primitives based on GCDH/GDDH are proposed, such as multiparty key agreement
[17], full domain hash from multilinear maps and identity-based aggregate signatures
[19], identity-based key-encapsulation mechanism [20], attribute-based encryption for
circuits [21] and so on.

2.4 Full Domain Hash from Multilinear Maps

Full domain hash (FDH) is an important cryptographic technique and has been widely
used in bilinear map cryptography where typically a hash function is employed to hash
a string into a bilinear group. In this section, we briefly describe a method to achieve
the full domain hash from multilinear maps, which will be used in our ring signature
scheme. The construction in terms of GGH framework and message signature based on
it are described as follows, and the details can be referred to [19].

Hash-and-Sign from GGH Framework. A trusted algorithm generates a GGH
instance by running ðparams; pztÞ  InstGenð1k; 1k¼lþ 1Þ, where k is the security
parameter and l is the length of message. Then, it obtains 2l elements
Ai;j  re� encð1; sampðÞÞ, where i 2 ½l� and j 2 f0; 1g. For a message m 2 f0; 1gl,
the full domain hash function (FDH) H mapping the l bits message to a level-l
encoding can be computed iteratively. Specifically, let H1ðmÞ ¼ A1;m½i� where m½i�
denotes the i - th bit of message m. For i 2 ½2; l�, HiðmÞ ¼ Hi�1ðmÞ � Ai;m½i�. So, the
FDH based on GGH framework can be defined as HðmÞ ¼ re� encðl;HlðmÞÞ.

Therefore, given a private key a sampðÞ and the corresponding verification key
VK ¼ re� encð1; aÞ, a signature on message m is r ¼ re� encðk � 1;HðMÞ � aÞ and
verified by testing isZeroðpzt; r � y� HðMÞ � VKÞ where y is a level-1 encoding of 1
that is included in params of the GGH instance. In [19], Hohenberger et al. showed that
this signature was secure against adaptively chosen message attack in standard model
conditioned on the k-GCDH assumption holding against subexponential advantage.

2.5 Secure Model

For a secure ring signature scheme U with N members, it must satisfy some anonymity
and unforgeability. In [2], according to various security strength, Bender et al. defined
various levels of anonymity and unforgeability, respectively. In this paper, the anon-
ymity uses the strongest definition, which is against full key exposure, while the
existential unforgeability is defined under the fixed-ring attack.

Anonymity. The anonymity AnonðU;A; k;NÞ under full key exposure is defined
using the following experiment between a challenger and an adversary A.
(1) Given the security parameter k, the challenger runs the Setup algorithm to gen-

erate the common public parameters PP and the keypairs fpki; skigi2½N� for the
signature scheme. Then, the challenger sends pp and �R ¼ fpkigi2½N� to the
adversary.
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(2) The adversary can make polynomially many ring signing queries, the form of
which is ði;m; �RÞ for varying index i 2 ½N� and message m 2M. After receiving
them, the challenger replies r SignðPP;m; ski; �RÞ:

(3) The adversary can adaptively query the signing secret key of the i - th user, where
i 2 ½N�. The challenger replies ski:

(4) The adversary chooses a message m 2M as well as two indexes i0; i1 2 ½max�
where pki0; pki1 2 �R, and makes ring signing query. The challenger chooses a
random bit b 2 f0; 1g and replies a ring signature r�  SignðPP;m; skib; �RÞ
where skib is the corresponding signing secret key of the public key pkib.

(5) The adversary A outputs a guess b� 2 f0; 1g for b.
We say the adversary wins if b�¼b. Define AnonU�FKEA as the probability that b�¼b,

where the probability is over the coin tosses of the Setup, sign algorithm and of A.
Definition 2. A ring signature U is unconditional anonymity against full key exposure
if for all probabilistic polynomial-time adversaries, the function AnonU�FKEA is negli-
gible in k.

Existential Unforgeability. For the ring signature scheme U, the existential unforge-
ability UnforgðU;F ; k;NÞ with respect to adaptive chosen-message attack and
fixed-ring attack can be defined using the following experiment between a challenger
and a forger F .
Setup. The challenger firstly chooses security parameter k and runs the Setup algorithm
to generate the common public parameters PP and the keypairs fpki; skigi2½N� for the
signature scheme. Then, it sends PP and �R ¼ fpkigi2½N� to the adversary.

Query. The adversary F can make polynomially many ring signing queries. The form
of query is ði;m; �RÞ where messages m 2 M which are chosen adpatively, and the
index i 2 ½N�. After receiving them, the challenger replies r SignðPP;m; ski; �RÞ.
Forgery. The forger F outputs a ring signature ðr�;m�; �RÞ.

We say the forger F wins if and only if the algorithm VerfðPP; r�;m�; �RÞ outputs 1
and m� is not one of the messages for which a signature was queried during the query
phase. Define UnforgU�adp�ufF as the probabilistic that VerfðPP; r�;m�; �RÞ = 1, where
the probability is over the coin tosses of the Setup, Sign algorithms and of F .
Definition 3 (Adaptive Unforgeability). A ring signature scheme U is existentially
unforgeable with respect to adaptive chosen-message attack and fixed-ring attack if for all
probabilistic polynomial-time adversaries, the functionUnforgU�adp�ufF is negligible in k.

We will also use the selective variant to UnforgðU;F; k;maxÞ where there is an Init
phase before the setup phase, wherein the forger F gives to the challenger the forgery
message m� 2 M. This message m� cannot be queried for a signature during the Query
phase. Finally, F outputs a ring signature ðr�;m�; �RÞ. If the algorithm
VerfðPP; r�;m�; �RÞ outputs 1, the forger F wins. In this case, we define
UnforgU�Sel�ufF as the probabilistic that the forger F wins the game, taken over the
random bits of the challenger and the forger.
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Definition 4 (Selective Unforgeability). A ring signature scheme U is existentially
unforgeable with respect to selective chosen-message attack and fixed-ring attack if for
all probabilistic polynomial-time adversaries, the function UnforgU�sel�ufF is negligible
in k.

3 Ring Signature Scheme in GGH Framework

According to the definition of ring signature, our new ring signature scheme in GGH
framework is as follows.

Setup(1kÞ. The algorithm includes two parts: Setup - params and Setup - Keys.

(1) Setup-paramsð1kÞ. It is a sub-algorithm in setup phase, which takes as input k and
runs ðparams; pztÞ  InstGenð1k; 1k¼N þ lÞ to generate a GGH instance where N is
the maximum number of ring supported by the scheme and l is the bit-length of
messages. (It is noted that N and l are all bounded by a polynomial in k). Recall that
we omit params arguments that are provided to every algorithm inGGH framework.

Next, the sub-algorithm chooses random encodings ai;v  sampðÞ where i 2 ½l�
and v 2 f0; 1g. Then it generates the corresponding level-1 encodings Ai;v ¼
re-enc ð1; aiÞ for i 2 ½l� and v 2 f0; 1g. Let A ¼ fðA1;0;A1;1Þ; � � � ; ðAi;0;Ai;1Þg; i 2
½l� and the common public parameters PP ¼ fparams;Ag.

(2) Setup - KeysðPPÞ. Each user can use the sub-algorithm to generate the public key
and secret key. Let U1; � � �UN denote the users in the ring signature scheme. The
user Uj2½N� chooses random encoding bj  sampðÞ and takes it as the secret key,
while the public key is Bj  re� encð1; bjÞ. Therefore, the ring can be denoted
by a set of public keys, such as �R ¼ fB1; � � � ;BNg.

SignðPP;m; bj; �RÞ. The member Uj2½N� use the secret key bj to generate a ring

signature of a message m 2 f0; 1gl about ring �R. The steps are as follows.

(1) Let m½1�; � � � ;m½l� be the bits of message m. A level-l encoding HðmÞ ¼
re-encðl;HlðmÞÞ of the l bits message can be computed by using the full domain
hash function H described in Sect. 2.

(2) Compute s1 ¼ bj � HðmÞ �
Q

i2½N� \ i 6¼j Bi

(3) Output the ring signature s ¼ re� encðk � 1; s1Þ

VerfðPP; s;m; �RÞ. The algorithm takes as input the common public parameters PP,
a signature s, a message m and the ring �R ¼ fB1; � � � ;BNg. The authentication process
is as follows.

(1) Compute the level-l encoding HðmÞ ¼ re� encðl;HlðmÞÞ about message m by
using the full domain hash function H.

(2) Check the signature by calling isZeroðpzt; s � y� HðmÞ �Qi2½n� BiÞ, where y is a
canonical level-1 encoding of 1 that is included in params, part of the public
parameter PP. The signature is accepted if and only if the zero testing algorithm
outputs 1.
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Correctness. The correctness property requires that each valid ring signature can pass
the verification algorithm. In the above ring signature scheme, the signature s is a level-
k�1 encoding of

Q
i2½l� ai;m½i��

Q
j2½N� bj. Since y is a canonical level-1 encoding of 1,

s � y is a level-k encoding of
Q

i2½l� ai;m½i��
Q

j2½N� bj. On the other hand, HðmÞ �Qi2½N� Bi

is also level-k encoding of
Q

i2½l� ai;m½i��
Q

j2½n� bj. Therefore, it can be concluded that all
valid ring signatures will be pass the testing algorithm, as long as the underlying
algorithms run correctly in GGH graded encoding system, e.g. sampð Þ,encð Þ,
re-Randð Þ.

4 Security Analysis

In this section, according to the security model that is defined in Sect. 3, we analyze the
anonymity and unforgeability of the proposed ring signature scheme in the standard
model.

4.1 Anonymity

Theorem 1. If the GDDH assumption holds, then the proposed ring signature scheme
based on GGH graded encoding system satisfies the unconditional anonymity.

Proof. According to the anonymity game in Sect. 3, the proof of Theorem 1 is as
follows.

(a) According to the corresponding parameters in the proposed signature scheme,
the challenger runs ðparams; pztÞ  InstGenð1k; 1k¼N þ lÞ to generate a GGH instance,
and chooses random encodings ai;m  sampðÞ, i 2 ½l�, v 2 f0; 1g. At the same time, for
the users U1; � � �UN , the challenger picks out random encodings bj  sampðÞ, j 2 ½N�.
The private key of user Uj2½N� is bj while the public key is Bj ¼ re-encð1; bjÞ. Let Ai;v ¼
re� encð1; aiÞ for i 2 ½l� and v 2 f0; 1g, and a set of public keys �R ¼ fB1; � � � ;Bng
denotes the ring. Finally, the challenger sends PP ¼ fparams; ðA1;0;A1;1Þ; . . .;
ðAl;0;Al;1Þg and �R to the adversary A.

(b) The adversary makes polynomially many ring signing queries for messages
m 2 f0; 1gl with respect to the ring �R. After receiving them, the challenger calls the
algorithm Sign in Sect. 3 and returns the results to A.

(c) The adversary continues to adaptively query the signing secret key of the j - th
user, where j 2 ½N�. The challenger replies the corresponding secret key bj.

(d) The adversary chooses a message m 2 f0; 1gl and two members w0;w1 2 Ui2½N�
in the ring, and sends them to the challenger. After receiving them, the challenger
chooses a random bit b 2 f0; 1g and replies a ring signature s�  SignðPP;m; bw½b�; �RÞ
where bw½b� is the corresponding signing secret key of the user wb.

(e) Finally, A wants to determine the identity of signer and outputs a guess b� 2
f0; 1g for b.

Now, let us analyze the advantage of A. On the one hand, According to the
algorithm Sign in the proposed signature scheme, each valid ring signature in the above
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game is a random encoding on the level-k�1. Therefore, we only need to analyze the
distribution of the ring signature. Firstly, regardless of the ring signature s� from the
user w0 or the user w1, the valid signature s� on message m 2 f0; 1gl about �R is a
random level-k�1 encoding of

Q
i2½l� ai;m½i��

Q
j2½N� bj(Accurately, which is a level-k�1

encoding of the coset
Q

i2½l� ai;m½i��
Q

j2½N� bjþ I). That is, for the same message, the
distribution of the ring signature from the different members in the ring is indistin-
guishable. On the other hand, without loss of generality, we can assume that the private
key of the user wb is b1. According to the definition of GDDH assumption, the
adversary cannot distinguish between the level-(k�1) encoding s1  b1 � Hðm�Þ �Q

i2½N� \ i6¼1 Bi that is the ring signature computed by challenger and an element �s1  
d� � Hðm�Þ �Qi2½N� \ i6¼1 Bi that is obtained for a random and independent d�  sampðÞ.
Because of the randomness property of the sampling procedure, �s1 is nearly uniformly
distributed among the cosets of I. Therefore, we can conclude that the advantage
AnonU�fkeA can be ignored, and the proposed ring signature scheme is unconditional
anonymity.

4.2 Unforgeability

In this section, according to the unforgeable security model described in Sect. 2, we
will prove the existential unforgeability of the proposed ring signature in the standard
model, which could be reduced to the GDDH problem that holds for the underlying
encoding scheme. To prove the existential unforgeability in the fixed-ring setting, we
employ the Hohenberger’s approach used in [19]. Specifically, we firstly consider the
selective variant to the proposed scheme,then from which the adaptive security can be
derived.

Theorem 2. The proposed ring signature scheme for message length l and the number
of members N is selectively secure in the unforgeability game under k-GCDH
assumption where k¼ l þ N.

Proof. With the usual method of reduction, assume there is a polynomial-time algo-
rithm (the forger) F that can break the selective security of the proposed ring signature
scheme with probability e for message length l and the number of members N, then we
can construct an efficient algorithm (the challenger) that can break the k-GCDH
assumption with probability e.

Now, given a GGH’s GCDH instance E ¼ fparams;pzt;C1  re� encð1; a1Þ; � � �
Ck  re� encð1; akÞg where ai  sampðÞ, k¼ l þ N and i 2 ½k�. The challenger
employs F to solve GCDH problem as follows.

Init. The forger F outputs the forgery message m� 2 f0; 1gl.
Setup. The challenger chooses random z1; � � � zl by calling to the algorithm sampðÞ and
generates the corresponding level-1 encodings Zi  re� encð1; ziÞ where i 2 ½l�. Let
m�½i� be the bits of message m� 2 f0; 1gl and �m�½i� denote ð1� m�½i�Þ. For i ¼ 1 to l, let
Ai;m�½i� ¼ Ci and Ai;�m�½i� ¼ Zi. In addition, let �R ¼ fClþ 1; � � �ClþNg denote the set of
public keys of N users in the ring. Finally, the challenger sends the common public

Ring Signature Scheme from Multilinear Maps 141



parameter PP ¼ fparams; ðA1;m�½1�;A1;�m�½1�Þ; � � � ðAl;m�½l�;Al;�m�½l�Þg as well as the set
�R ¼ fClþ 1; � � �ClþNg to the forger F. It is noted that the parameters are distributed
independently and uniformly at random as in the real scheme.

Query. The forger F chooses messages m 2 f0; 1gl and m 6¼ m�. Then it requests ring
signature under �R on these l� bit messages. Let j be the first index such that
m½j� 6¼ m�½j�. The challenger computes s1 ¼ zj �

Q
i2l\ i6¼j Am½i� �

Q
lþ 1� v� lþN Cv and

s ¼ re-encðk�1; s1Þ. Next, the challenger takes s as the ring signature on m and returns
it to F .

Since the result of IsZeroðs � y� HðmÞ �Qlþ 1� v� lþN CvÞ is 1, where HðmÞ is a
level-l encoding of

Q
i2½l� Am½i� and H is the full domain hash function based on GGH,

the signature can pass the verification of VerfðPP; s;m; �RÞ. Namely, the responses of
the challenger are valid ring signatures, which are distributed statistically exponentially
closely to the real unforgeability game because of the rerandomization in the re-enc
algorithm.

Response. The forger F outputs a ring signature s� on the forgery message m�.

Now, we analyze the reduction and show that the ring signature s� is a solution of the
GCDH instance E ¼ fparams; pzt;C1  re� encð1; c1Þ; � � �Ck  re� encð1; ckÞg. If
s� is a valid ring signature on message m�, it should pass the verification such as
1 IsZeroðs� � y� Hðm�Þ �Qlþ 1� v� lþN CvÞ. However we know that Hðm�Þ �
Q

lþ 1� v� lþN Cv ¼
Q

i2½l� Am�½i� �
Q

lþ 1� v� lþN Cv is a level-k encoding of (
Q

i2½k� ci).
Therefore, the verification of the ring signature s� implies a solution to E. Consequently,
the challenger succeeds whenever the forger does, and the Theorem 2 is proved.

With the invention of GGH graded coding system as a multilinear maps candidate,
to design more common cryptographic primitives based on multi-linear maps becomes a
hot research topic. In this paper, we construct a novel ring signature scheme and prove
its security in standard model. Under the graded decisional Diffie-Hellman (GDDH)
assumption and grade computational Diffie-Hellman (GCDH) assumption, the new ring
signature scheme guarantees the anonymity of signer even if the secret key of the signer
is exposed and holds the existential unforgeability against adaptive chosen message
attack, respectively. However, the main disadvantage of the proposed scheme is that the
size of public key is more than that of the schemes based on bilinear-pairing. Recently,
Coron et al. proposed a practical grading encoding system in integer ring [22]. We will
attempt to use the integer ring instead of ideal lattice to reduce the size of public key.
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