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Abstract. We studied the problem on applying format-preserving
encryption (FPE) to character data, specifically the uncertainty of the
binary size of ciphertexts caused by variable-width encoding. In this
paper, we suggested a extended rank-then-encipher approach for char-
acter data which connects character strings with numbers under mixed-
radix numeral system. Based on this method, we proposed a generic char-
acter FPE scheme that deals with mixed-radix numerals, by introducing
a customized “dynamic modulo addition” into unbalanced Feistel con-
struction. Our work showed a new way of designing encryption methods
for arbitrary message spaces which involves no tradeoff between efficacy
and efficiency. Besides describing our design, security of our schemes are
also analyzed.
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1 Introduction

1.1 Problem of Applying FPE on Character Data

In recent years researches on applied cryptography have developed several prac-
tical enciphering methods, a paradigm is the so called format-preserving encryp-
tion (FPE). FPE aims to encipher messages of some specified format without
disrupting it as achieving an acceptable level of security. Despite many efforts of
designing FPE schemes, the work that has been done so far simply reduces con-
cept “format” to “arbitrary domain”, while other aspects other than the value
of messages do not receive sufficient attention. In this paper, we emphasize the
variable-width encoding of character data, and how it affects FPE application.

1.2 Related Work

Since FPE was first proposed in 1981, there have been plenty of researches on
the subject [1–6,8]. In 2002, Black and Rogaway [1] provided a series of FPE
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methods on enciphering integers, and suggested that such ciphers can be used
to construct FPE schemes on any arbitrary domain. In 2009, Bellare et al. [2]
defined the rank-then-encipher approach (or RtE for short), and suggested that
it’s possible to construct any FPE scheme based on integer FPEs.

Some previous FPE schemes work on the message space X = ZN =
{0, 1, . . . , N − 1} for any desired N . Such schemes include both Feistel-based
schemes like FFSEM [3], and other constructions such as card shuffle [4,5]. Some
researchers present a method for keeping the database structure and supporting
efficient SQL-based queries [16]. There are some application build the structure
to achieve the function [13–15]. For Within these existing works, the FFX mode,
proposed in 2010, is of the best generality [6]. Some researchers present a method
for keeping the database structure and supporting efficient SQL-based queries
[16]. FFX specifically aims on encrypting strings of some arbitrary alphabet Σ
and works on the message space X = Σn for any desired string length n.

In a word, through all the current works on FPE, there is still no satisfying
method in dealing character FPE. Clearly we need some better solutions.

1.3 Our Contributions

In this paper, we provide an effective and efficient solution for character FPE
problem that can encipher character strings while preserving their length and
memory consumption. In detail, our contributions are:

Firstly, we suggest that character alphabets can be ranked using an improved
RtE method, where the characters are represented by extended position notation
called mixed-radix numeral systems.

Secondly, we propose and analyze a character FPE scheme based on Feistel,
and extend from the FFX mode to be able to use mixed-radix numerals.

2 Preliminaries

2.1 Format-Preserving Encryption

We start with a brief review to the classical definition of format-preserving
encryption [2], described as:

Definition 1 (Format-preserving encryption). A format-preserving encry-
ption scheme is a function

F : K × N × T × X → X ∪ {⊥}, (1)

where K, N , T , X are called the key space, format space, tweak space and
domain, respectively. All of them are nonempty and ⊥ /∈ X .

All FPEs work on some subspaces of the domain X , determined by a certain
format in N , named slice:
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Definition 2 (Slice on a message space). Given a concrete format N ∈ N ,
the N -indexed slice is defined as

XN = {X ∈ X |∀{K,T} ∈ K × T , EN,T
K (X) ∈ X}, (2)

where EN,T
K (X) returns the ciphertext of X.

FPE requires that any X ∈ X lives in at least one slice indexed by some N ∈ N .
It also requires that any slice XN is finite for all N ∈ N . For any {K,T} ∈ K×T ,
both the encipher and decipher process should be permutations on XN , and
whether EN,T

K (X) = ⊥ or not depends only on the format and the plaintext,
but not on K and T .

2.2 Security Notion

Throughout all the security notions that FPEs could be after, the PRP notion
is mostly used. Let E : K × X → X be a block cipher, and let AE(·) indicates
an adversary A with an oracle E, which may ask any encryption query E(·).
Denote ε

$← EK as to pick a key K randomly from K and return EK(·), and

denote π
$← Perm(X ) as to pick a permutation π on X randomly and return

π(·). Then the adversary’s advantage is given by

AdvPRP
E (A)

def
= Pr[ε $← EK ,Aε(·) = 1] − Pr[π $← Perm(X ),Aπ(·) = 1]. (3)

3 Introducing Mixed-Radix Numeration to Character
FPE

3.1 Notations

Denote the set of all possible characters as Chars. We know that Chars is finite
and |Chars| = c. Given any two character strings A,B ∈ Chars∗ (by ∗ we mean
that they each consists of any arbitrary number of characters), denote A ‖ B
(or AB in short) as their concatenation. Thus any character string X can be
represented by X = x1x2 · · · xi, x∗ ∈ Chars. Additionally, we let l(X) be the
number of characters in string X (henceforth the length for short), and s(X) be
its binary size (henceforth the size), we believe that to fully describe the string
Z, all of Chars, l(X), and s(X) are necessary. Obviously for single characters
x ∈ Chars, the number of bytes needed in encoding it is given by s(x). If let
a set Ψ = {ψ1, · · · , ψI} be all possible binary sizes of single characters, then Ψ
determines a partition of Chars:

Chars =
I⋃

i=1

Ci,∀c ∈ Chars, c ∈ Ci ⇔ s(c) = ψi, (4)

where each of Ci is a subset of Chars in which the binary size of any character is
ψi. We believe that the given partition could help reaching a satisfying solution
for character FPE problem.
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3.2 Mixed-Radix Numeration: A Promising Way

Character strings to mixed-radix numerals. As the matter of fact, charac-
ter data is not the only one that results in a complex and irregular message space.
For example, a full date of AD chronology can be considered as 3-digit numbers
with each digit respectively in the domain Z31, Z12 and Z9999 (at least for now),
thus the date 24-03-1998 is actually also a number 243131219989999, where the
subscripts are to represent the radixes of each digit. Similarly, suppose there are
an octahedral dice, a hexahedral dice and a tetrahedral dice, the sample space
of the statistical event “successively roll the three dices, and return the results
in sequence” can also be described by a 3-digit number with each digit respec-
tively in Z8, Z6 and Z4. Both the examples are to use a kind of non-standard
positional numeral systems known as mixed-radix numeral systems [9], in which
the numerical base varies from position to position. Such numeral systems are
able to precisely represent any particular message space, as long as the amount
of elements is a composite number of which all factors are known. Therefore, the
mixed-radix numeration might just be what needed in building FPE schemes on
arbitrary message spaces, like that of character data.

Structure of character strings. With set Ψ given in the previous section, we
suggest a notion called the structure to describe the format of character data in
the sense of mixed-radix numeration:

Definition 3 (Structure of character data). Without loss of generality, for
a character string X ∈ Charsn = x1x2 · · · xn, let

ωi = |{xj ∈ X|s(xj) = ψi, 1 � j � n}|, i ∈ {1, 2, . . . , I} (5)

be the number of characters in X that is encoded with ψi bytes, the structure of
X is therefore defined as

Ω(X) = {ω1ψ1 , ω2ψ2 , . . . , ωIψI
}. (6)

Figure 1 gives a intuitive example on how the structure we defined works on
the character strings. Additionally, the structure refines the notion of “format”
for character data, because of the following properties it has:

Proposition 1 (Properties of the structure). For the structure Ω(·) of
character data, the following statements holds:

1. For any X ∈ Chars∗, Ω(X) is unique.
2. For any A,B ∈ Chars∗, X = A ‖ B ⇔ Ω(X) = Ω(A) + Ω(B).
3. For any A,B ∈ Chars∗, Ω(A) = Ω(B) ⇔ (l(A), s(A)) = (l(B), s(B))

because:

∀X ∈ Chars∗, {l(X) =
I∑

i=1

ωis(X) =
I∑

i=1

ωiψi, ωi ∈ Ω(X), ψi ∈ Ψ. (7)

Therefore, we believe that it is the key basis to extend RtE approach for character
data, and to further build character FPE schemes on.
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Fig. 1. This figure gives an illustration of the structure of character strings. Assume the
overall character set Chars consists of 2 subsets: C1 containing the modern English
alphabet and C2 containing Latin letters with diacritical marks, respectively takes
1 byte and 2 bytes to be represented (i.e. Ψ = {ψ1 = 1, ψ2 = 2}). Then since the string
X = “café” has 3 characters from C1 and 1 character from C2, its structure is given
by Ω(X) = {31, 12}, from which we know that this 4-character string takes a memory
space of 5 bytes.

3.3 The Extended Rank-Then-Encipher Approach

In order to build character FPE schemes that work under mixed-radix numer-
ation, we extend the RtE approach, to rank character strings with mixed-radix
notation. Note that though the structure of character data is the basis of our
work, it cannot directly do this kind of ranking. To do that we mainly exploited
the partition on Chars given at Sect. 3.1. Recall that Chars is divided into
subsets Ci(i = 1, 2, · · · , I), in which all characters are of the same binary size
ψi. Obviously a bijective mapping can be built between elements in Ci and the
integer domain Z|Ci|, i.e. each character in Ci can be mapped to a integer in
{0, 1, · · · , |Ci| − 1}. Thus when characters are treated as digits of a mixed-radix
number in RtE, a feasible way is to decide the radixes according to the subset
where the characters belong to. This is done by denoting all c ∈ Chars with the
following 2-tuple:

c = (v(c), t(c)) : c ∈ Ci ⇔ t(c) = iv(c) ∈ Z|Ci|, (8)

where t(c) is the tag of the character that marks the subset it belongs to, and
v(c) is the value of it. Correspondingly, for the subsets C∗, a table is kept to
record |C∗|, so that the radix of a character can be easily determined by its tag.
Take the demonstration in Fig. 1 as an example, suppose the character “é” is the
10-th character in the subset C2, which contains a total of 100 characters (i.e.
|C2| = 100), then the ranking routine will recognize “é” as (9, 2), and thus find
its radix 100. Moreover, with digits in the form of such 2-tuples, the structure



118 Y. Huang et al.

of a character string is also indicated by the tags in its ranking result, thus the
proposed ranking approach is a important reference in preserving the format of
character strings.

4 C-FFX: A Generic Solution for Character FPE

Under such guiding ideology, we propose a generic and efficient scheme for char-
acter FPE using the unbalanced Feistel construction [11]. Built based on the FFX
mode construction, in this scheme (which we call the “C-FFX”) we extende the
RtE approach to rank character strings with mixed-radix numerals, and applied
a specially designed dynamic modulo addition in our construction, which is able
to operate between k-digits mixed-radix numerals, to ensure the format of the
scheme’s output remains the same as its input.

4.1 Feistel-Based Construction with Dynamic Modulo Addition

Recall that our goal of character FPE designing is to preserve the structure of
character strings, i.e. for an input string X and its corresponding output string
Y , a character FPE should ensure that Ω(X) = Ω(Y ) always hold.

For concision, given a character string X ∈ Charsn, let |X| = n be its
length, and denote the i-th digit of X as X[i] (i = 1, 2, . . . , n). For 1 � i <
j � n, let X[i..j] = X[i] ‖ X[i + 1] ‖ · · · ‖ X[j]. Also we denote cmin =
min(|Ci|, i = 1, 2, . . . , I), cmax = max(|Ci|, i = 1, 2, . . . , I) respectively as the
amount of elements of the smallest and largest subset of Chars, and define
X = |Charsn

Ω(X)| as the number of character strings with the structure of string
X. It’s easy to know that cmax|X| � X � cmin|X|. Additionally, since in each
round of any Feistel, the input string X is split into two substrings (denoted as
L and R, for the left part and the right part), again assume |X| = n, we also let
l = |L| and n − l = |R|.

In Fig. 2 we show the structure of one round of C-FFX, where F is the round
function and �gc/�gc is the modulo addition/subtraction module we designed.
Since, as mentioned, in each round the input string X is split into two substrings
L and R, obviously Ω(X) = Ω(R) + Ω(L). Without loss of generality, suppose
L directly goes to the right of the output Y , then certainly Ω(Y ) = Ω(L) + Ω′.
Therefore to make Ω(Y ) = Ω(X), it’s easy to know that Ω′ = Ω(R). As we
know, the rest part of Y is generated by L�gc F (R) or L�gc F (R), therefore to
ensure Ω(Y ) = Ω(X) is to let Ω(L �gc F (R))/Ω(L �gc F (R)) = Ω(R). It’s not
quite realistic to design a round function that returns a mixed-radix numeral
pseudo-randomly, while the radixes of the output varies at each round. Thus in
order to do achieve out goal, we made some major improvement on the modulo
addition function.

The modified modulo addition and its inverse, which we called the “dynamic
modulo addition” �gc and �gc, are digit-wise operations, meaning that they
process the input pair digit by digit. Assume that string A and B are the two
inputs of �gc or �gc, and suppose we demand that the output of the operations
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F

Li, Ω(Li) Ri, Ω(Ri)

Li, Ω(Li)

Li+1, Ω(Li+1) Ri+1, Ω(Ri+1)

gc

Xi, Ω(Xi)

Xi+1, Ω(Xi+1)=Ω(Li)+Ω(Ri)=Ω(Xi)
Zi, Ω(Ri)

(a) The enciphering process

F

R'
i+1, Ω(R'

i+1)L'
i+1, Ω(L'

i+1)

R'
i+1, Ω(R'

i+1)

R'
i, Ω(R'

i)L'
i, Ω(L'

i)

gc

X'
i, Ω(X'

i)=Ω(R'
i+1)+Ω(L'

i+1) =Ω(X'
i+1)

X'
i+1, Ω(X'

i+1)

Z'
i+1, Ω(L'

i+1)

(b) The deciphering process

Fig. 2. A single round of the C-FFX construction.

Fig. 3. Mechanism of the modulo addition function �gc and �gc. Both functions tra-
verse the two input strings A and B (line 2), in the i-th loop, line 3 uses tag t(A[i]) to
determine the radix r for the modulo operation, thus the content of the output digit
v(Z[i]) computed in line 5 or 9 is kept in the range of subset Ct(A[i]). Since line 4 sets
tag t(Z[i]) to be the same as t(A[i]). Therefore according to Eq. 8, this ensures that
Z[i] belongs to Ct(A[i]).

(denoted as Z) to have the same structure as A (i.e. Ω(Z) = Ω(A)), then for
each digit i of Z, our operations first computes the sum of the corresponding
digit A[i] and B[i], then modulo the result with the radix referenced by the tag
t(A[i]). Since the tags of each digit of the output is exactly the same as the input
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A, this procedure ensures that the output is of A’s structure. The radix of input
strings varies from digit to digit, so are the operations, thus they are considered
“dynamic”. As shown in Fig. 3, the 2-tuple notation in the extended RtE makes
the operations easy to realize.

C-FFX gives a practically effective solution to character FPE problem, which
is theoretically able to be applied on any character data, encipher/decipher them
correctly in fixed rounds, without using cycle-walking or repeated encryption.

4.2 Security

Regardless the modification we made, by definition our construction is an unbal-
anced Feistel with an arbitrary alphabet. Thus same as other studies on the
provable-security analysis of Feistel networks, the round functions used are
assumed to be selected uniformly and independently at random.

Security bound. In [12], the authors mentioned that the CCA bound for
binary unbalanced Feistels given in its Theorem 7 can be extended to unbalanced
Feistels with arbitrary alphabet. Although C-FFX uses mixed-radix numeration
and thus the radix of its alphabet is not fixed, its CCA bound can still be
given by:

Theorem 1 (CCA security of C-FFX). Denote a C-FFX as ε, given cmin
and a fixed τ ≥ 1, while l > n − l, we have

AdvCCA
ε (q) ≤ 2q

τ + 1
((3
l/(n − l)� + 3)q/cminl)τ , (9)

while
r = τ(4
l/(n − l)� + 4) (10)

is the minimum number of Feistel rounds needed.

To proof the above result works for C-FFX, the only thing we need to do is to
reinterpret Lemmas 11 and 12 in [12] to analyze the case when the construction
works on mixed-radix numeration, since Theorem 7 in [12] is deduced based on
these two lemmas:

Lemma 1 (reinterpretation of Lemma11 in [12]). In C-FFX, the chance
that two distinct non-adaptive queries have the same coin at round t ≥ 1 is at
most cminl−n.

Proof. Since the scheme is designed to preserve the structure of character strings,
in each round, the structure of both input and output of the Feistel is assumed
to be known (this is due to that the only thing that a Feistel round will do to
the structure of its input is to swap positions of the digits in a constant way).

Suppose that a C-FFX scheme receives distinct non-adaptive queries X1 and
X2. For each i ∈ {1, 2}, let (Li, Ri) be the output at round t − 1 of Xi, where
|Li| = l and |Ri| = n − l. The queries X1 and X2 collide at time t if and only
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if R1 �gc F (L1) = R2 �gc F (L2), with F being the round function at round t.
This occurs when R1 and R2 differ, with probability |Charsn−l

Ω(R)|−1 = R−1 ≤
cminl−n, because F is uniformly random. If R1 = R2 then so are L1 and L2,
which contradicts the hypothesis that the two queries are distinct.

Lemma 2 (reinterpretation of Lemma12 in [12]). In C-FFX, the chance
that two distinct non-adaptive queries collide at time t > 
l/(n − l)� is at most
3/cminb.

Proof. Suppose that a C-FFX scheme receives distinct non-adaptive queries X1

and X2. We shall prove by induction on b that for any b ≤ l, the probability
that outputs at round t > 
b/(n − l)� of the two queries have the same last b
digits is at most 3/cminb. The claim of this lemma corresponds to the special
case b = l.

First consider the base case b < n − l. For each i ∈ {1, 2}, let (Li, Ri) be the
output at round t−1 of Xi, where |Li| = l and |Ri| = n− l. The last (n− l)-digit
substring of the round-t output of Xi is Ri �gc F (Li), with F being the round
function at round t. If R1 and R2 differ then the probability that outputs at
round t of the two queries have the same last b digits is at most cmin−b (the
same reason as in Lemma 2). If R1 = R2 then the two queries have the same coin
at round t − 1, which by Lemma 2 occurs with probability at most cminl−n.
Hence, by union bound, the chance that the two queries have the same last b
digits is at most cmin−b + cminl−n ≤ 3/cminb.

Next consider b ≥ n − l and assume that the chance round-(t − 1) outputs of
the two queries have the same last b−n+ l digits is at most 3/cminb−n+l. The
outputs at round t of the two queries have the same last b digits if and only if (i)
they have the same coin at round t, which by Lemma 2 occurs with probability
at most cminl−n, and (ii) their output at round t − 1 have the same last b −
n + l digits, which occurs with probability at most 3/cminb−n+l by induction
hypothesis. As the round functions in the network are independent, the chance
that both (i) and (ii) occur is at most cminl−n · 3/cminb−n+l = 3/cminb.

Notice that according to [12], the above extension is only known to be work
when the round functions are contracting, which is the reason that we set l > n−l
in out construction.

5 Conclusion

In this paper we stated the problem in applying format-preserving encryption on
character data, as well as analyzed the fundamental reason of it. By introducing
mixed-radix numeral systems to character FPE, we refined the format of char-
acter data, and extended the rank-then-encipher approach for character FPE.
On the top of these, we proposed the C-FFX scheme as a generic character FPE
solution, which adopts Feistel-based construction with a specially built dynamic
modulo addition module, so that mixed-radix numerals can be processed. Analy-
sis showed that our scheme provides solid security. In our future works, we plan
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to further design FPE schemes that work under mixed-radix numeration, based
on other constructions.
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