
ABAC Based Online Collaborations in the Cloud

Mohamed Amine Madani1(B), Mohammed Erradi1, and Yahya Benkaouz2

1 Networking and Distributed Systems Research Group, SIME Lab, ENSIAS,
Mohammed V University in Rabat, Rabat, Morocco

amine.madani@um5s.net.ma , mohamed.erradi@gmail.com
2 LCS, Department of Computer Science, FSR, Mohammed V University in Rabat,

Rabat, Morocco
y.benkaouz@um5s.net.ma

Abstract. Nowadays sharing data among organizations plays an impor-
tant role for their collaboration. During collaborations, the organizations
need to access shared information while respecting the access control
constraints. In addition, most organizations rely on cloud based solu-
tions to store their data (e.g. openstack). In such platform, data access
is regulated by Access Control Lists (ACLs). ACL defines static access
rules. It assumes the knowledge of the whole set of users and possible
access requests. This make ACL unusable in collaborative context due to
the dynamic nature of collaborative sessions. In this paper, we consider
ABAC, a flexible and fine-grained model, as an access control model for
cloud-based collaborations to overcome the ACL limitations. We pro-
vide an architecture that integrate ABAC in the storage level of a cloud
platform.

Keywords: ABAC model · Swift · Collaborative session · Access con-
trol

1 Introduction

Nowadays, sharing information among multiple organizations plays an impor-
tant role to ensure an optimal utilization of distributed resources to improve
productivity and profits. In order to reach this objective, a tight collaboration
among organizations should be established. Collaborative applications allow a
group of users to collaborate, communicate and cooperate through distributed
platforms in order to perform common tasks, such as document sharing.

As most organizations rely on cloud-based solutions to store their data, cloud
platforms [1] provide a considerable convenience to support the collaboration as
well as the information sharing [8]. In this direction, OpenStack cloud platform
represents a very interesting solution. OpenStack [6] is an open source IaaS
(Infrastructure as a Service) software adopted by many cloud service and tech-
nology providers such as Rackspace, IBM, Dell and RedHat.

During collaborations, the organizations need to access and use the informa-
tion shared by other collaborating organizations. This information often contains
sensitive data. It is meant to be shared only during specific collaborative sessions
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

F. Belqasmi et al. (Eds.): AFRICATEK 2017, LNICST 206, pp. 67–76, 2018.

https://doi.org/10.1007/978-3-319-67837-5_7



68 M.A. Madani et al.

[5]. This arises the access control issue [4]: The organizations need strong access
control model to permit or deny a specific request of other organizations.

Using OpenStack cloud platform, the collaborating organizations store their
data and information as objects in the Swift storage [7] (an object storage service
in OpenStack). Swift uses the access control lists (ACL) to manage the access
permissions. However, ACL model is too simple, static, and a coarse-grained
model that does not provide the rich semantics for the collaboration. During a
collaborative session, users may intervene dynamically without a prior knowl-
edge of which user will access which objects. Specifying access rules during a
collaboration is a difficult even an impossible task to accomplish using ACL. A
fine-grained access control model is mandatory to support the requirements of
the collaborative systems [5].

In this direction, Attribute Based Access Control model (ABAC) is of a great
interest. ABAC model [9,10] overcomes the limitations of the classical access con-
trol models (i.e., ACL, MAC and RBAC). This model is adaptive and flexible.
ABAC is more suitable to describe complex, fine-grained access control seman-
tics, which is especially needed for collaborative environments. In ABAC, access
requests are evaluated based on the user attributes, the object attributes and
the environment attributes. Therefore, in this paper, our main contributions are
twofold: (1) Ensuring the access control dynamicity in collaborative session on
the cloud based on the ABAC model. (2) Providing an architecture to integrate
ABAC in the storage level of the cloud and providing an enforcement model.

The paper is organized as follows: Sect. 2 presents the background of this
work. In Sect. 3, we present the related work. Section 4 describes the suggested
architecture and the enforcement model. Section 5 discusses the implementation
performance. Finally, we conclude in Sect. 6.

2 Background

This section aims to present the necessary background of this work. This section
mainly focus on the presentation of the concept of Cloud based collaborative
application. Then, it gives an overview of the OpenStack cloud platform. Finally,
it presents the attribute based access control model.

Cloud based collaborative applications. Collaborative applications are
among the services that can be provided by the cloud computing. They enable
collaboration among users from the same or different tenants of a given cloud
provider [2,3]. During collaborations, the participants need to access and use
resources held by other collaborating users. These resources often contain sensi-
tive data. They are meant to be shared only during specific collaborative session
[5]. The collaborative session is an abstract entity, comprising a set of users,
called members of the session, playing the same or different roles. These users
may have concurrent access to shared objects in this session depending on the
access control policies. As most organizations rely on cloud-based solutions to
store their data, cloud platforms provide a considerable convenience to support



ABAC Based Online Collaborations in the Cloud 69

the collaboration. In this direction, OpenStack cloud platform represents a very
interesting solution.

Openstack. OpenStack is a robust open-source IaaS software for building pub-
lic, private, community or hybrid clouds. OpenSteck is adopted by many cloud
providers such as Rackspace, IBM and RedHat. OpenStack contains the fol-
lowing components: Nova, Swift, Glance, Cinder, Keystone, and Horizon. Each
component acts as a service which communicates with other sevices via message
queues. Keystone provides authentication and authorization for all OpenStack
services. In our work, we focus on the Swift object storage. Swift is a multi-
tenant, highly scalable and durable software defined storage system designed to
store files, videos, virtual machine snapshots and other unstructured data [7]. It
allows building, operating, monitoring, and managing distributed object storage
systems that can scale up to millions of users.

The Account Server is responsible for listings of containers, while Container
Server is responsible for listings of objects. A container is a mechanism that stores
data objects. An account might have many containers, whereas a container name
is unique. A user represents the entity that can perform actions on the object in
the account. Each user has its own account and is associated to a single tenant.
Swift uses the access control lists (ACL) to manage the access permissions. In
fact, the ACL model defines static access rules. It is not suitable for collaborative
environment. In this direction, Attribute Based Access Control model (ABAC)
is of a great interest.

ABAC Model. ABAC is an adaptive and a flexible access control model for
the collaboration in the cloud. The core components of ABAC model [9] are:

– U , O and E represent finite sets of existing users and objects and envi-
ronments respectively. A is a finite set of actions might be noted A =
{create, read, update, delete}.

– UATT , OATT and EATT represent finite sets of user, object and environ-
ment attribute functions respectively.

– For each att in UATT ∪OATT ∪EATT , range(att) represents the attribute’s
range, which is a finite set of atomic values.

– attType : UATT ∪ OATT ∪ EATT → {set, atomic}, specifies attributes as
set or atomic values.

– Each attribute function maps elements in U to an atomic value or a set
• ∀ua ⊆ UATT. ua : U → Range(ua) if attType(ua) = atomic
• ∀ua ⊆ UATT. ua : U → 2Range(ua) if attType(ua) = set

– Each attribute function maps elements in O to an atomic value or a set
• ∀oa ⊆ OATT.oa : O → Range(oa) if attType(oa) = atomic
• ∀oa ⊆ OATT.oa : O → 2Range(oa) if attType(oa) = set

– Each attribute function maps elements in E to an atomic value or a set
• ∀ea ⊆ EATT.ea : E → Range(ea) if attType(ea) = atomic
• ∀ea ⊆ EATT.ea : E → 2Range(ea) if attType(ea) = set

– An authorization that decides on whether a user u can access an object o
in a particular environment e for the action a, is a boolean function of u,
o, and e attributes: Rule: authorizationa(u, o, e) → f(ATTR(u), ATTR(o),
ATTR(e)).



70 M.A. Madani et al.

3 Related Work

In the Task based access control [13] (TBAC), the permissions are granted in
steps that are related to the tasks progress. The TRBAC [14] model is con-
structed by adding task to the RBAC model. In TRBAC, the user has a rela-
tionship with permissions through roles and tasks. On the other hand, in the
Team Access Control Model (TMAC) [12], the permissions are granted to each
user through its role and the current activities of the team. These models enable
fine-grained access control but they do not incorporate contextual parameters
into security considerations and do not support dynamic collaboration during
collaborative sessions.

Current access control models for cloud are built on role-based access control
(RBAC). There have been very few works for implementing ABAC in cloud.
Attributes based access control (ABAC) [10] model brings out many advantages
over traditional identity or role based models. Jin et al. [15] present an ABAC
framework for access control in cloud IaaS. This paper provides formal models
for the operational and administrative aspects of this framework for cloud IaaS.
Authors present the implementation of the models based on the open source
cloud platform OpenStack. However, this ABAC framework is not dedicated for
the swift environment.

Biswas et al. [16] proposes an extension of Swift Object Server where policies
might be specified on a Swift object at the content level and let different users
access different parts of it. Biswas et al. [17] presents an attribute based protec-
tion model for JSON documents. Security-label attribute values are assigned to
JSON elements and authorization policies are specified based on these attribute
values. This approach is specific to JSON documents, whereas our suggested
architecture might be applied to any objects.

4 Architecture and Enforcement Model

In this section, we present the implementation of the ABAC model on the swift
storage component. First, we describe the architecture of the extended ABAC
module. Then, we present the enforcement model. Finally, we evaluate the imple-
mented approach to demonstrate its feasibility.

4.1 System Architecture

We implemented the ABAC model on the swift storage component. This compo-
nent acts as a service that communicates with other components (Nova volume,
nova compute, nova network, glance and keystone) via message queues. These
components are loosely coupled. Keystone is the identity service used by Open-
Stack for authentication and authorization. It provides a token signed by each
users private key.

Let us consider a telemedicine scenario where the School Hospital (SH), the
Emergency Medical Services (EMS), and the Home Hospital (HH) are three



ABAC Based Online Collaborations in the Cloud 71

collaborating organizations. These organizations share a common private cloud
openstack. We consider that these organizations use the swift component for the
storage service. In this use case, each organization is assigned to a swift account.
(e.g. the accounts ACC SH, ACC EMS and ACC HH represent the organizations
SH, EMS and HH respectively).

This cloud provides a service of collaborative sessions for these organisations.
This service allows a group of users, from different tenants, to collaborate in order
to observe and treat a patient admitted in the Home Hospital (HH) emergency.
In this example, we have a collaborative session CS1 of a telemedicine type.
During a collaborative session, users may intervene dynamically without a prior
knowledge of which user will access which object.

In order to support ABAC Model in the OpenStack Swift environment and
overcome the limitations of Swift ACL, we propose to extend the Swift com-
ponent by implementing a new ABAC Module (Fig. 1). The ABAC module is

Fig. 1. The system architecture



72 M.A. Madani et al.

composed of five components: User attributes, object attributes, environment
attributes, authorizations and the policy decision component. In the following,
we describe each of these components:

– User attributes: The security administrator defines the user attributes as
a function that takes user as input and returns a value from the attribute’s
range. (user1 : attr1 : val1) means that for the user user1 the value of
the attribute attr1 is val1. For example, a user attribute function such as
Role ∈ UATT maps user1 ∈ U to a value neurologist. Furthermore, the
cloud administrator defines the attribute function UOwner to specify the user
owner. For instance (user1 : UOwner : ACC SH) means that the user user1
is owned by the account ACC SH. Finally, the administrator defines the
attribute function JoinCS to specify which users could join the collaborative
sessions. The value of this attribute is either true or false. (user1 : JoinCS :
true) means that the user user1 could participate in the collaboration.

– Object attributes: The tenant administrator assigns the object attributes
as a function that takes object as input and returns a value from the
attribute’s range. (obj1 : attr1 : val1) means that for the object obj1 the value
of the attribute attr1 is val1. Furthermore, the cloud administrator defines
the attribute function OOwner to specify the object owner. For instance
(MR1 : UOwner : ACC HH) means that the object MR1 is owned by the
account ACC HH. Finally, the administrator defines the attribute function
SharedCS to specify which objects could be shared in the collaborative ses-
sion. For example, (Per info1 : SharedCS : false) means that the object
Per info1 (personal information) could not be shared in the collaborative
session.

– Environment attributes: The security admin defines the environment
attributes that describe the environment parameters which represent the
context in which the information access occurs. This repository is respon-
sible for users management (e.g. to join/leave the collaborative session).
The members of the collaborative sessions are specified with the attribute
Member as follows: (CS1 : Member : {ACC user1, ACC user2}) means
that for the collaborative session CS1 the value of the attribute Member is
{ACC user1, ACC user2}.
Regarding the shared resources management: (CS1 : Shared : {MR1,MR2})
means that for the collaborative session CS1 the value of the attribute shared
is {MR1,MR2}. Moreover, in this component the tenant admin defines other
attributes related to the collaborative session such as: Template [5] (a pattern
for a collaboration activity), State of the session. Finally, the administrator
specifies the tenant trust relation established by the truster account as defined
in [11] in order to support cross-domain collaboration. These relationships
are specified with the attribute function trustUser as follows: (ACC SH :
trustUser : ACC EMS), which means that the tenant ACC EMS is autho-
rized to assign values from ACC EMS’s user attributes to Tenant ACC SH’s
users that will join the collaborative sessions. In order to support the resources
sharing in a collaborative session owned by another tenant, the tenant admin-



ABAC Based Online Collaborations in the Cloud 73

istrator defines a new trust relationship by using the attribute function
trustObject as follows: (ACC SH : trustObject : ACC EMS), which means
that the tenant ACC EMS is authorized to assign values from ACC EMS’s
object attributes to tenant ACC SH’s objects that will be shared in the
collaborative sessions.

– Authorizations: The administrator specifies the authorizations policy. In
our scenario, we consider that each tenant defines its policy rules. Note that at
this level, we suppose that the security policy rules are valid and conflict-free.
The policy rules are specified here as follows: read−u : role : tenant admin∧
cs : template : neuroEmergency ∧ cs : member : u ∧ cs : shared : o ∧ o :
objecttype : MR ∧ u : UOwner : UH ∧ o : OOwner : UH, which means
that for the action ’read’, this authorization is valid if only if : (1) The user
u plays the role tenant admin in the session cs; (2) There is a collaborative
session cs that is an instance of the template neuroEmergency; (3) The user
u is member of the collaborative session cs; (4) The object o is shared in the
session cs; (5) The object type of o is the MR (medical record); (6) The user
u is owned by the tenant UH; (7) The object o is owned by the tenant UH.

– Policy decision: This component is responsible for evaluating the access
request to the resources in the collaborative session based on the collected
attributes values and authorizations. When a user sends a request to access
a resource stored in the cloud swift, the policy decision component evaluates
this request according to the policy rules in order to decide whether the user
is authorized to access this resource or not.

4.2 Enforcement Model

The ACL model defines static access rules. During a collaborative session, a set
of users from the same or different tenants join this session and share multiple
resources. In our use case, user1, user2, user3, user4 and user5 are the members
of the collaborative session CS1 and the objects MR1 and Scan1 are shared in
this session.

A general authorization process for Swift component with ABAC module is
illustrated in Fig. 2. When the user user1 attemps to access the resource MR1
stored in the swift. First, (1) The user requests keysone to get his/her token. (2)
Keystone generates a token and sends it to the user. (3) The user sends a request
to ABAC module by using his/her token to access the resource MR1. The Policy
decision component receives this request to evaluate it. (4) During the evaluation
process, the policy decision component requests the components: user attributes,
object attributes and environment attributes. (5) to receive user1’s attributes,
MR1’s attributes and the attributes related to the collaborative session wherein
this user is member. (6) The policy decision component requests the authoriza-
tions component and (7) receives all the policy rules stored in this component.
These attributes and policy rules will be used by the policy decision to evaluate
access request in order to decide whether the user is authorized to access this
resource or not. (8) the policy decision will execute an ACL command to assign
the authorization decision (permit or deny) to the user in the swift environment.



74 M.A. Madani et al.

Fig. 2. The enforcement model

(9) The policy decision component executes a swift API command in the swift
component using user1’s token in order to send the user1’s access request to
swift. (10) user1 access to the resource MR1 if the authorization decision is
permitted.

5 Implementation and Evaluation

In this paper, we implement the ABAC model on the swift storage component
of openstack. Our experiments were run on a virtual machine with the following
characteristics (Memory 1024 MB, 2 cores CPU, Hard Disk 30 GB). We consider
the download time of a Swift object with and without ABAC module. We observe
that the performance of enforcing our approach depends on many factors, such
as numbers of rules, number of attributes and number of concurent collaborative
sessions. In our analysis, we have used a synthetic dataset that contains up to
500 rules, 200 user attributes and 25 concurent collaborative sessions.

Figure 3(a) shows that the average time to authorize the access to a Swift
object increases with 25% and 30.5% for policies of 100 and 500 rules respectively
using the ABAC Module. The waiting time for getting a policy decision becomes
larger when there are too many authorizations to be collected. We acknowledge
that our implementation works well for a medium number of authorizations.

Furthermore, we compute the running time for access/deny decisions to a
Swift object with and without ABAC module for 200 rules and user attributes
with 40 to 200 UA assignments. Figure 3(b) shows that the average time for
download of a Swift resource increases with 26% and 33% for 40 and 200 user
attributes assignments respectively using ABAC Module. We acknowledge that
our implementation works well for a medium number of authorizations.



ABAC Based Online Collaborations in the Cloud 75

Fig. 3. Running time overhead for access/deny decisions

Finally, we compute the running time for access/deny decisions to a Swift
object with and without ABAC module for 500 rules, 80 UA assignments and
number of concurrent collaborative sessions with 5 to 25 active ones.

Figure 3(c) shows that the average time for access/deny decisions to Swift
resources increases with 30.5% and 61% for 5 and 25 concurrent collaborative
sessions respectively using the ABAC Module. We observe that our implementa-
tion works well for a medium number of active concurrent collaborative sessions.
The overhead reaches 61% in an unusual situations where there are 25 concurrent
parallel collaborative sessions.

6 Conclusion

In this paper, we provide an architecture that integrates ABAC in the stor-
age level of the cloud platform. This arcitecture is implemented on the cloud
platform Openstack to allow the use of the access control policies based on the
ABAC model. It interacts with the Swift component of Openstack for policy
enforcement. Therefore, this arcitecture provides a fine-grained access control
to support collaborations between multiple organizations allowing a secure data
sharing during a collaborative session. The evaluation results have shown that
the suggested approach has a very limited overhead when the ABAC module is
used.



76 M.A. Madani et al.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST Special
Publication 800–145 (Draft). http://csrc.nist.gov/publications/drafts/800-145/
Draft-SP-800-145-cloud-definition.pdf (2011). Accessed 10 Sept 2011

2. Calero, J.M.A., Edwards, N., Kirschnick, J., Wilcock, L., Wray, M.: Toward a
multi-tenancy authorization system for cloud services. IEEE Secur. Priv. 8(6),
48–55 (2010)

3. Tang, B., Sandhu, R.: A Multi-Tenant RBAC model for collaborative cloud ser-
vices. In: 2013 Eleventh Annual International Conference on Privacy, Security and
Trust (PST), pp. 229–238 (2013)

4. Takabi, H., Joshi, J.B.D., Ahn, G.J.: SecureCloud: towards a comprehensive secu-
rity framework for cloud computing environments. In: Proceeding of the 1st IEEE
International Workshop Emerging Applications for Cloud Computing, pp. 393–398.
Seoul, South Korea (2010)

5. Tanvir, A., Tripathi, A.R.: Specification and verification of security requirements
in a programming model for decentralized CSCW systems. ACM Trans. Inf. Syst.
Secur. 10(2), 7 (2007)

6. OpenStack cloud platform. http://www.openstack.org/. Accessed 05 Oct 2016
7. OpenStack Swift Architecture. https://swiftstack.com/openstack-swift/

architecture/. Accessed 05 Oct 2016
8. Zhang, Y., Krishnan, R., Sandhu, R.: Secure information and resource sharing in

cloud. In: CODASPY 2015—Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy, pp. 131–133. Association for Computing
Machinery, Inc. (2015)

9. Jin,X.,Krishnan,R., Sandhu,R.:Aunified attribute-based access controlmodel cov-
eringDAC,MACandRBAC. In:Cuppens-Boulahia,N., Cuppens, F.,Garcia-Alfaro,
J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31540-4 4

10. Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for web services. In:
ICWS, pp. 561–569. IEEE Computer Society (2005)

11. Aydoğan, R., Festen, D., Hindriks, K.V., Jonker, C.M.: Alternating offers proto-
cols for multilateral negotiation. In: Fujita, K., Bai, Q., Ito, T., Zhang, M., Ren, F.,
Aydoğan, R., Hadfi, R. (eds.) Modern Approaches to Agent-based Complex Auto-
mated Negotiation. SCI, vol. 674, pp. 153–167. Springer, Cham (2017). doi:10.1007/
978-3-319-51563-2 10

12. Thomas, R.: TMAC: a primitive for applying RBAC in collaborative environment.
In: 2nd ACM, Workshop on RBAC, Fairfax, Virginia, USA, pp. 13–19 (1997)

13. Thomas, R., Sandhu, R.: Task-based Authorization Controls (TBAC): a family of
models for active and enterprise-oriented authorization management. In: 11th IFIP
Working Conference on Database Security, Lake Tahoe, California, USA (1997)

14. Sejong, O.H., Park, S.: Task-role-based access control model. Inf. Syst. 28(6), 533–
562 (2003)

15. Jin, X., Krishnan, R., Sandhu, R.: Role and attribute based collaborative admin-
istration of intra-tenant cloud iaas. In: 2014 International Conference on Collabo-
rative Computing: Networking, Applications and Worksharing (CollaborateCom),
pp. 261–274 (2014)

16. Biswas, P., Patwa, F., Sandhu, R.: Content level access control for OpenStack swift
storage. In: CODASPY, pp. 123–126 (2015)

17. Biswas, P., Sandhu, R., Krishnan, R.: An attribute based protection model for
JSON documents. In: NSS, pp. 303–317 (2016)

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145-cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145-cloud-definition.pdf
http://www.openstack.org/
https://swiftstack.com/openstack-swift/architecture/
https://swiftstack.com/openstack-swift/architecture/
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-319-51563-2_10
http://dx.doi.org/10.1007/978-3-319-51563-2_10

	ABAC Based Online Collaborations in the Cloud
	1 Introduction
	2 Background
	3 Related Work
	4 Architecture and Enforcement Model
	4.1 System Architecture
	4.2 Enforcement Model

	5 Implementation and Evaluation
	6 Conclusion
	References


