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Abstract. The Internet of Things (IoT) is the science of connecting multiple
devices that coordinate to provide the service in question. IoT environments are
complex, dynamic, rapidly changing and resource constrained. Therefore, proac‐
tively adapting devices to align with context fluctuations becomes a concern. To
propose suitable configurations, it should be possible to sense information from
devices, analyze the data and reconfigure them accordingly. Applied in the service
of the environment, a fleet of devices can monitor environment indicators and
control it in order to propose best fit solutions or prevent risks like over consump‐
tion of resources (e.g., water and energy). This paper describes our methodology
in designing a framework for the monitoring and multi-instantiation of fleets of
connected objects. First by identifying the particularities of the fleet, then by
specifying connected object as a Dynamic Software Product Line (DSPL),
capable of readjusting while running.

Keywords: Multi-instantiation · IoT · Smart-environment · Dynamic software
product lines · DSPL · Self-adaptation · Context · Environment · Fleet

1 Introduction

The Internet of things is a global infrastructure that enables advanced services by inter‐
connecting physical and virtual things like smartphones, sensors, computers, machines,
vehicles, buildings, roads, cities or countries, and even people and animals [1]. These
services vary from basic context information like location or weather, to much more
complex setups. Smart environments are primary applications of the IoT, mainly
concerned with issues related to pollution, limited resources, energy optimization, and
fault tolerance.

Connected objects can monitor environment indicators like temperature, air and
water quality, energy consumption, or radiation. This helps collect information about
the surrounding, and prepare solutions to eradicate several phenomenon, or prevent
some of the risks. In this context, our work consists of a platform that monitors a fleet
of device to preform intelligent and dynamic change for an optimal configuration. When

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
F. Belqasmi et al. (Eds.): AFRICATEK 2017, LNICST 206, pp. 57–66, 2018.
https://doi.org/10.1007/978-3-319-67837-5_6



a fleet is implemented, it bears a configuration (FConfig) that is characterized by the set
of corresponding devices along with their respective configuration (DConfig). However,
the IoT system is complex, rapidly changing, highly variable, heterogeneous, prone to
risks and failure, and extremely dynamic. This implies that in the face of change, the
system should have the ability to adapt itself in order to continue offering the needed
performance. Dynamic proactive adaptation in particular is required to provide adjust‐
ments at runtime [2]. Furthermore, and thanks to IoT devices which are growing expo‐
nentially in number and performance, it is much more conceivable to collect real time
context data, and react accordingly. Additionally, a Device Management (DM) platform
monitors every device in the fleet. It can inspect specific information about the services
provided by the device (coffee readiness, light status, expired merchandize, speed of car,
motor condition, …), it can collect information about the context of the fleet (tempera‐
ture, light, location, …) and it can report on the characteristics of the devices themselves
(battery life, memory, software version, etc.). In addition to that, and poster to processing
the collected data, it is responsible for controlling the fleet in order to adjust its behavior.

In this sense, the paper describes our process in designing a framework for the smart
monitoring and reconfiguration of a fleet of connected devices. The paper starts by
presenting a motivational example–a smart irrigation fleet, which will be depicted all
along the development of our framework. Our process will then be elaborated. The first
step identifies the requirements for the management of fleets of connected objects. The
second step discusses the particularities of IoT devices and their surroundings. Three
representative dimensions are conceived; the system, the context, and the environment.
The third step studies the self-adaptation approaches, and selects the Dynamic Software
Product Lines (DSPL) paradigm as the mechanism that fits best our set of requirements.
The fourth and final step introduces an architecture skeleton; it considers the outcome
of the previous stages; the three dimensions on the one hand, and the engineering
processes involved in DSPL on the other hand.

The paper is structured as follows: Sect. 2 presents a motivational example.
Section 3 describes our methodology by presenting the requirements needed from the
DM platform, describing the characteristics of IoT environments and overviewing the
mechanisms for self-adaptation. Section 4 presents the DSPL based framework. And
finally, Sect. 5 presents the related works before concluding.

2 Motivational Examples

In this section, we intend to illustrate the need for proactive self-adaptation of fleets of
connected objects. We consider the following irrigation system example: Dust and air
humidity sensors, temperature sensors, water sprinklers, water taps, and a smartphone
compose a fleet of devices, installed in an agriculture field. Sensors collect data about
the dust and air humidity, and about the temperature. When humidity is low, the tap or
sprinkler provides dust with the needed water. When the temperature is too high or too
low, alerts are sent to the smartphone. The fleet does not take into consideration the
specific knowledge related to the domain of agriculture. For instance, instead of watering
the plants a days before a rainy day, the fleet could consider the weather forecast to
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readjust its configuration, and wait for the rain instead of unnecessarily using the water
supplies. In this scenario, the proactive adaptation would be possible by implementing
a Device Management (DM) Platform that monitors devices and their surroundings,
processes the data, and reconfigures the fleet by reconfiguring associated devices.

3 Methodology

As we intend to design a framework that manages run-time variability in a fleet of
connected objects, the following section outlines our methodology.

3.1 Main Requirements Elicitation

In order to insure the proper management of the fleet, the DM is required to provide the
necessary mechanisms to monitor IoT devices, to propose best-fit adaptions, to manage
different levels of variability and to support a large number of connected devices. Our
system’s requirements can be identified as follow.

Smart proactive self-adaptation: the platform should provide the necessary mecha‐
nisms to analyses collected data and adapt the system in problematic situations. In a
resources constrained environment like ours, every planned adaptation should be subject
to validation to insure its necessity.

Uncertainty management: It is not always possible to predict the events that will
trigger a reconfiguration. Thus, the platform is required to evaluate the qualities the
system offers in comparison with the ones requested by users.

Variability management: in a fleet of connected devices, variability can be captured
at different levels. The platform should be able to manage this separately throughout the
system’s lifecycle.

Physical abstraction: the platform should support communication with heteroge‐
neous devices and various technologies in order to monitor and actuate. This requirement
will not be discussed in this paper. Only preliminary concepts will be introduced.

3.2 Identifying Dimensions for IoT Systems

In IoT applications, it is important to take into consideration the mutual dependency
between objects and their surroundings -context and environment; change in the
surrounding has repercussions on the proper functioning of devices. Similarly, the
reconfiguration of the fleet changes the state and behavior of the surrounding. We
observed that relevant information comes from three main elements, that we call dimen‐
sions. The system is the fleet. It is represented by the embedded devices and their
configurations. It is managed in a way that its outcome allows the achievement of goals
specified by the domain expert. The context is everything that surrounds the systems,
and has an impact on it. Context is represented by measurements captured by devices
that surround the system. Context data can also originate from the user, and it can be
time or space bound. Finally, the environment illustrates knowledge related to a
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domain. It holds universal information that might not have a direct impact on the system
at a time being. However, it could be significant in other dispositions.

It is important to note that these dimensions are dynamic. Devices that form the
system at a particular configuration might not be the same involved in another instance
of the same fleet. They could become part of the context. Similarly, information that had
an impact on the system in a configuration, might become irrelevant in another, and be
part of the environment instead. This confirms the need for variability management. One
configuration could correspond to fleet is installed in a covered field during the summer.
This installation protects the plants from the burning sun and harmful UV, and helps
control the temperature inside the covers. For this installation, the system is the water
sprinkler, the water tap, and the smartphone. The context is the inside temperature, and
the dust humidity. And finally, the environment is the outside temperature, the weather
forecast, the national irrigation laws and the agriculture best practices. During the spring,
the field is uncovered. The configuration then switches, the fleet is now installed in an
open space. The system is still the water sprinkler, the water tap, and the smartphone.
The context on the other hand now includes the brightness, the air temperature, the dust
and air humidity, and the weather forecast. The environment contains national irrigation
laws and the agriculture best practices. In accordance with these dimensions and with
the requirements presented above, a DM platform is required to adjust the fleet to answer
the user’s needs. The next session discusses self-adaptation mechanisms and selects the
best fit for our application.

3.3 Selecting a Self-Adaptation Mechanism

A Self-Adaptive Software (SAS) is a system that can automatically modify itself in the
face of a changing context, to best answer a set of requirements. The Self-adaption
capacity can be provided by programming languages in the form of exceptions, param‐
eters or conditions. However, adaptation through these mechanisms is application
specific, error prone and poorly scalable. In contrast to these mechanisms, numerous
external approaches contribute to the development of runtime adaptation of software.
The following will present an overview of the most notable -but not all- approaches for
designing self-adaptive systems.

Overview of self-adaptive approaches. Different approaches for SASs can be found
in the literature. Reviews and surveys in the matter are available in [3,4]. This section
enumerates the most notorious ones, and the design technics they fall into. Architec‐
ture-based self-adaptive techniques formulate and process changes in an architectural
model [5] that describes the properties of software through a set of bound components
and interconnections. The two concepts are strictly separated, which allows their rear‐
rangement and replacement. The Rainbow Framework [6] and the three Layer Archi‐
tecture [7] are the most acclaimed architecture-based approaches for SASs. Agent-based
approaches model systems as a collection of autonomous agents which can interact
within an environment to realize common goals; they create a Multi-Agent System
(MAS). In MASs, agents are systems that sense the environment they are part of, and
act on it in order to realize a purpose [8]. Reflection is the capability of a system to
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observe and modify its composition at runtime [9]. This technic is used to inspect the
internal behavior of a system by implementing additional components for monitoring
purposes. It is also used to adapt behavior or structure of a system by changing or
replacing or adding features. Reflective middleware like ReIOS [10] are a prominent
way to reason about self-adaptation. Model-driven engineering (MDE) shifts the focus
to the creation and use of domain models, to automate code generation. Models abstract
the application and its context, as well as the relationships between them. With regards
to self-adaptive systems, MDE provides means for designing manageable systems along
with reconfiguration mechanisms to generate executable applications, supported by
runtime models during execution [11]. The MUSIC Framework [12] and the Dynamic
Software Product Line (DSPL) [13] are model driven approaches. The latter uses models
at runtime to address variability and context changes during system execution.

The DSPL mechanism. DSPL uses software product lines principles to build systems
that can adapt to context fluctuation, new user requirements and variant QoS states.
These principles include software reuse, variability modeling and management, and
automatic product derivation.

We consider the DSPL paradigm the most fitting approach to provide autonomic
scalable support for a fleet of connected devices, from design to execution [14]. First,
DSPLs provide a systematic and non-restrictive way to deal with SASs [15], also they
successfully realize the MAPE-K loop [16] as tested by Bencomo et al. in [17]. Besides,
on the one hand, monitoring and controlling are the main activities for the fleet manage‐
ment. On the other hand, these same two activities are central tasks in DSPLs, which
makes the paradigm a good fit for the self-adaptation of the fleet. Also, with regards to
uncertainty, the quality of a product can be measured against user requirements by the
mean of Goal-based approaches. Goal models can represent the system requirements at
the domain level of (D)SPLs, in the form of variable reusable components. Furthermore,
variability is a key challenge in the management of a fleet of connected things; it takes
place at different levels. Static variability is concerned with similarities and variations
between devices, dynamic variability is dealing with the runtime reconfiguration, and
temporal variability, describes the alterations of the three dimensions. Dealing with
variability is by far the greatest asset of DSPL, since it adopts essential concepts from
SPL [18].

The fleets–an irrigation system installed in different fields—can be considered as a
DSPL. Each fleet is a product that shares common characteristics with other fleets, but
still answers the specific needs of the customer it serves. For instance, some of the
devices installed in Sarah’s field are like the ones at Omar’s. Still, unlike him, Sarah is
also interested in measuring the fertility of the soil, and applying fertilizers when needed.
A fleet has the capacity to re-adjust itself when requirements are no longer fulfilled. A
New FConfig implies a different set of devices with a different DConfig.
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4 Designing a Fleet as a DSPL

The first level in the process is the creation of assets. As described in Fig. 1, a meticulous
study of the domain in question helps define the qualities the system should satisfy, while
specifying the variability and the variation points. The result of a domain study is a fleet
line (a). The second level is the creation of the final product. The requirements of each
customer are described in formal language. The selection of features is carried out
accordingly, and then adjusted to fit the exact needs of the customer. Features are finally
derived, linked, tested and deployed in order to instantiate the Product—the fleet (d).
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Fig. 1. The DSPL Process

DSPLE takes the SPL process one phase further. Each product is thoroughly moni‐
tored (c) to determine the structural or behavioral state that dissatisfies requirements.
When these are no longer fulfilled, a new configuration is planned (b). This one achieves
the optimal satisfaction of primary goals. Features are then re-selected, re-adjusted, re-
derived and re-linked (re-tested and re-deployed) to create a new product—a new
configuration for the fleet. This process is repeated whenever the system fails to fulfill
requirements, in light of contextual change.

From one engineering process to the other, the fleet’s three dimensions defined in
(3.2) have different designations, as described and illustrated in Fig. 2. At the domain
level, each one of the concepts contributes to the creation of assets. With regards to the
system (1), a domain expert thoroughly studies the domain in order to determine the
functionalities the system should provide and qualities to comply with. In this sense, the
system is where domains requirements are extracted, which are then translated to goals,
features, components or assets. Context (2) is where the initial requirements are updated
to answer the needs that weren’t captured by domain experts, but arose after the deploy‐
ment of the fleet. Environment (3) holds more generic information about domains and
devices. It can contribute to the evolution and extensibility of the system by supporting
an open Marketplace. This one could supply the system with new components, device
specifications, documentation, and other related information.
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Fig. 2. A DSPL three-dimensional Framework

At the domain level, each one of the concepts contributes to the creation of assets.
With regards to the system (1), a domain expert thoroughly studies the domain in order
to determine the functionalities the system should provide and qualities to comply with.
In this sense, the system is where domains requirements are extracted, which are then
translated to goals, features, components or assets. Context (2) is where the initial
requirements are updated to answer the needs that weren’t captured by domain experts,
but arose after the deployment of the fleet. Environment (3) holds more generic infor‐
mation about domains and devices. It can contribute to the evolution and extensibility
of the system by supporting an open Marketplace. This one could supply the system
with new components, device specifications, documentation, and other related infor‐
mation. At the application level, the monitoring and controlling aspects take place. In
relation to the system (4), for each product, devices are monitored in order to determine
situations when reconfiguration is required. Sensed or calculated information, feed‐
backs, battery level, computational performance, network and data accessibility, and
other characteristics are relevant. Context (5) on the other hand deals with stakeholders
that surround the system, and have an impact on it. Devices that are not part of the system,
but contribute to its activity are part of the context, user activity and logs also matter,
the time and space of the fleet is also responsible of how it is configured. The environ‐
ment (6), finally, is place to generic information about the surroundings of the system,
that might, but still do not have an impact on the fulfillment of requirements. Devices
around the fleet can be in this category, laws, rules or conditions constrained by a time
or place are too, part of the environment. Monitoring the environment gives the platform
proactive qualities, this helps avoid waste of resources in unnecessary adaptations.

5 Related Works

To face the growing complexity of IoT environments, several researchers have identified
the need for Frameworks and architectures that support the management of fleets of
cooperative devices, considering self-adaptation a core requirement. Inox [19] combines
IoT and service architectures to provide enhanced application and service deployment
capabilities. The architecture enables the service and network infrastructure with self-
management capabilities. In [20], the authors propose an architecture, where agents
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collect data about protocol operations, measurement-based learning assess the opti‐
mality of the control parameter and if necessary, adaptation is realized by applying the
new policies to agents. The Focale project [21] introduces an architecture for orches‐
trating the behavior of heterogeneous distributed resources. Data models support the
derivation of different models from a core model, and ontologies reason about the
change. The ACE model, proposed in the Cascadas Project [22], defines a agent-based
architecture that enables service components to dynamically adapt their behavior based
on their context. In [23], a cognitive management framework finds the optimal way to
deliver an application in different contexts by enabling the reuse of virtual objects.

With the exception of the Focale Project, none of the above frameworks realize
proactive adaptation. Furthermore, in the discussed architectures, no mechanism was
proposed to validate the need for intelligent adaptation. Finally, variability is not consid‐
ered a fundamental concern, thus not managed.

Several SPL based architectures can also be found in the literature. In [24], a DSPL
based architecture, combined with preference based reasoning, provides the necessary
mechanisms for reasoning about change; this allows the realization of decentralized self-
managed system. Gaia-PL [25] is an extension of the Gaia platform for the analysis and
design of multi-agent systems in active spaces. A requirement specification pattern
captures the behavior of a system in dynamic conditions, and reuses the software assets
for future similar systems. In [26], the author proposes a multi-view blueprint architec‐
ture, a basis for future smart city projects, based on the SoaSPLE [27] framework for
run-time variability management of service-oriented software product lines. Finally,
authors in [28] propose a SPL based process for the development of connected devices,
defined by the means of CVL, to provide reuse mechanisms for the development of a
family of agents.

In contrast with the aforementioned (D)SPL based approaches, our framework intro‐
duces variability management at different stages of the process, as explained previously,
including static (devices), dynamic (configurations) and time-bound (dimensions alter‐
ations) variability. None of the proposed SPL based approaches introduce the environ‐
ment dimension, necessary for a smart proactive adaptation.

6 Conclusion and Perspectives

As a result of a successful COP22 [29], held in 2016 in Marrakech, several Paris agree‐
ments were put into practice, including new funds to support climate technologies in
developing countries. The IoT paradigm supports this claim by enabling services that
manage limited resources, insure service durability, maintain the quality of service, etc.
This is possible by supplying connected devices with the necessary mechanisms to
readjust their behavior in the face of resource shortage, internet interruptions or service
unavailability.

Connected objects can monitor environment indicators, and then a DM Platform
processes the information about the surrounding, and prepares solutions to best answer
the needs of users. Our work consists of designing a framework for the monitoring and
control of a fleet of connected devices, which allows preforming intelligent and dynamic
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changes for optimal configurations. The first step in our process defines the main
requirements needed from the DM platform. The second step defines the characteristics
of the fleets, its context and its environment, along with their mutual dependencies. The
third step selects DSPL among the various self-adaptation mechanisms as a basis for the
framework composition. Considering it is capable of managing uncertainty by capturing
inconsistency and readjusting the system’s configuration. Eventually, the various
modules of the framework are depicted.

This paper has investigated the problem regarding IoT fleets adaptation and proposed
a framework for developers to build adaptable applications. Future work includes the
validation and implementation of the framework using the VariaMos [30] Tool [31],
and an agriculture field case study.
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