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Abstract. Software has become ubiquitous in healthcare applications, as is
evident from its prevalent use for controlling medical devices, maintaining
electronic patient health data, and enabling healthcare information technology
(HIT) systems. As the software functionality becomes more intricate, concerns
arise regarding quality, safety and testing effort. It thus becomes imperative to
adopt an approach or methodology based on best engineering practices to ensure
that the testing effort is affordable. Automation in testing software can increase
product quality, leading to lower field service, product support and liability cost.
It can provide types of testing that simply cannot be performed by people.
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1 Introduction

Proprietary frameworks for software tests are common in industry. The resulting test
cases and procedures can be very large, difficult to maintain and hard to compose into
complex scenarios involving parallelism. Migration to a standards-based and more
efficient software testing environment is appealing to organizations seeking to reduce
costs, and to benefit from the continuing advancements in technology. In this paper, we
propose to modernize legacy software tests to a model-driven testing methodology,
based on formalized test cases. The legacy test procedures are initially translated to
Testing and Test Control Notation (TTCN-3) and then abstracted to test cases in the
Test Description Language (TDL). The goal here is to study model-driven test pro-
cedure generation from TDL, and to evaluate TDL as a formal language for expressing
test cases. Software modification is a typical activity in a software system’s life cycle
and especially in the maintenance phase [19]. During maintenance, the challenges of
integration and regression testing are to select a sufficient subset of existing tests to
apply and to create new tests. Test automation is highly desirable for regression testing,
an activity that is generally tedious and time consuming [8].

After many maintenance cycles, a legacy set of Test Cases and Procedures (TCs
and TPs) may become increasingly difficult to adapt to change of the System Under
Test (SUT) or difficult to improve using new functionalities related to test automation.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
F. Belqasmi et al. (Eds.): AFRICATEK 2017, LNICST 206, pp. 140–156, 2018.
https://doi.org/10.1007/978-3-319-67837-5_14



This limitation is sometimes exacerbated by the high-cost and the inherent complica-
tions of integration with an evolving SUT environment. At some point or another, an
organization may wish to modernize its software testing framework. Such a migration
is costly, but could bring many benefits: a modern infrastructure that allows better test
management and a higher level of test automation [11]. Furthermore, the migrated set
of TCs and TPs should be easier to change, enhancing the agility of the organization.
Organizations need to be able to integrate additional functionalities seamlessly when
new requirements arise. Then, reengineering of legacy TPs could address some of the
issues. In this paper, we present a pilot project in reengineering of embedded software
TCs and TPs towards a model-driven methodology, whereby executable TPs are
automatically generated from TCs. The modernization process has two phases:

i. The first phase is tool-based; it starts with the automatic translation of legacy TPs
to functionally-equivalent TPs (test implementation) in the TTCN-3 [9]. The
TTCN-3 language was selected for its industrial strength, its ability to enable test
automation, and its recognition as a standard.

ii. In a second phase, the TTCN-3 TPs are abstracted into TCs (test specification)
written as models in TDL [10]. TDL is a standardized scenario-based approach; it
expresses requirements as test objectives and connects them to scenarios that
describe the interaction with the SUT. This approach is suitable for automated TPs
as tests can be derived from the scenarios and automated.

We use the terminology1 of the ETSI TDL and TTCN-3 standards, as defined in
context, to describe various test artifacts and activities. In this paper, we discuss the
modernization of software tests for testing software. The rest of this paper is organized
as follows: Sect. 2 surveys related work; Sect. 3 discusses the modernization approach;
and Sect. 4 concludes the paper.

2 Related Work

In general, system or software migration is performed in order to increase quality, to
manage obsolescence, and/or to satisfy new business requirements. The migration of
legacy software tests may involve the hardware platform, the software framework or
both. A hardware migration implies switching the hardware platform to a modern one.
On the other hand, software migration proposes to change the programing language,
the operating system, and the data or the database. For example, data can be migrated
from a file system to a database management system. In [4], a migration from a
relational to an object-oriented database was implemented to benefit from
object-oriented technology. TPs written in programming languages such as Perl,
Python, C, C++, etc. are considered to be software programs. Therefore, the migration
to a new language is handled as a specific language translation activity. In [15],
massive amounts of TPs that were implemented as Excel and Word files were migrated

1 TDL: Test Description, Test Objective, Test Configuration, Data Set
TTCN-3: testcase, Test Type, Test Data, Test Component, Test Behavior.
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to a centralized test management tool. The authors aimed to achieve better test
management of test artifacts— distributed in an ad-hoc manner— by centralizing them
in one location. In [12], a medium size software system written in PL/IX was migrated
to C++ to respond to new business requirements, such as lower maintenance costs,
higher performance and better reliability. In [16], the authors address the potential and
risks of migrating the software and the hardware platforms of massive software tests
that may require significant computing resources and lengthy execution time to cloud
computing. Several tools and strategies to assist in the migration of legacy systems are
presented in De Lucia et al. [1, 2]. Reliable analysis of source code is essential for
successful software migration. Selecting and comparing analysis tools is usually based
on a defined set of criteria. Analysis tools can be used to support a migration, for
example, by identifying lines in the test code, analyzing the control flow, and providing
information about test data [20]. Our work differs by migrating the software tests to be
used in model-driven testing methodology.

3 Reverse-Engineering of Legacy Software Tests

Most companies that provide solutions to organizations in healthcare use Natural
Language (NL) to express software requirements. In the Requirements Engineering
Management Findings Report [13] several surveys of industry practice are conducted:
“…when asked in what format requirements are being captured, the overwhelming
majority of the survey respondents indicated that requirements are being captured as
English text, shall statements, or as tables and diagrams”.

In our pilot project, the original TPs were written in a proprietary test language
based on Eclipse Ant/XML [3] software is a PC based verification tool used to execute
automated test in order to verify the software. Based on user feedback, manually
creating TPs in Ant/XML can be qualified as labor-intensive. The legacy TPs are the
starting point of the migration as they convey information about test behavior, test
components and test data. In this paper, we propose an approach that starts with the
code migration of these TPs to the TTCN-3 language, which in turns will be
reverse-engineered into TCs in TDL. Once the reengineering of the software tests is
completed, new TCs can be captured directly in TDL, and these TCs can be used to
generate TPs in TTCN-3 or in any other desired scripting language. Furthermore, when
new requirements emerge to demand the evolution of the software tests, this software
evolution can take place at the model level. Figure 1 shows the modernization process
of the legacy software tests.

There are some difficulties with the legacy process shown in Fig. 1. The test
engineer spends a lot of time transforming TC into TP. There is a large gap in
abstraction level between the TC and the TP. The detail level is low in the TC, but very
high in the TP. It is an error-prone, time-consuming task to bridge this gap manually.
Because resources are always restricted, the software quality engineer has less time for
a more intensive TC. For example, Patient Monitors (PM) are electronic medical
devices for observing critically ill patients by monitoring their vital signs. The four
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most important vital signs are the pulse rate, oxygen level, body temperature, and
electrocardiogram (ECG) activity. Doctors and nurses are informed by an immediate
alarm when a vital sign of a patient such as heart rate falls below a given lower limit or
exceeds a given higher limit, so they can provide timely and appropriate treatment.
A malfunction of the PM may result in the death of a patient which makes this
functionality safety-critical and it must be validated accordingly. Figure 2 shows an
example that illustrates a legacy TC for Heart Rate (HR) alarm testing and the trans-
formation to the appropriate TP.

The ultimate goal in the modernization process is to enable automatic generation of
the TPs and to have them migrate to a more standard testing language to benefit from
its important features. The next subsections explain the two activities enclosed in the
modernization process, code-to-code migration and code-to-model.

Modernization
Process

Legacy Process

(1) code-to-code

(2) code-to-model 

TP 
(Ant/XML)
---------------
---------------
---------------

TC (NL)
---------------
---------------
---------------

Software 
Requirements

(5) New 
Requirement

copy

(6) manual
TC evolution

(4)  
Automatic
Generation

developed
manually

developed
manually

(3) extract test 
objectives,

enhance & check

TP 
(TTCN-3)
-------------
-------------
-------------

TP 
(any)

------------
------------
------------

TC  (TDL)
---------------
---------------
---------------

TC (TDL)
---------------
---------------
---------------

Any: Ant,
TTCN-3

(7) 
Automatic
Generation

TP 
(any)

------------
------------
------------

Fig. 1. Modernization of legacy software tests

<project name= “Test LowerAlarm”>  
  <HR Sensor>
    <target name= “target setup”>    <EditField lowerLimit =  "60" upperLimit =  "100">   </target>
    <target name= “target AlarmStatus”>   
          <HROutOfRange="48"/>     <checkAlarm staus="OFF"/> 
          <HRWithinRange="70"/>     <checkAlarm staus="ON"/>    
    </target>
  </HR Sensor>
</project>

Events:  Set PM Normal HR domain 60-100; 
               Stimulus: HR signal below lower limit
               Response: alarm goes off
               Stimulus: HR signal within normal limit
               Response: alarm disappears

TP

TC

Fig. 2. Develop a TP manually from a TC
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3.1 Code-to-Code Migration

From a migration perspective, we consider a set of existing software tests as software
source code. Typical migration approaches [5, 7, 14] fall into three categories:

• New development of the application. For large-scale systems, rewriting an appli-
cation from scratch is difficult, error prone, expensive and time consuming [6].

• Modernizing the legacy code itself. Code modernization is an attractive approach to
organizations as it has the highest probability of success among the three types of
approaches [17]. The migration risks are identified early in the code modernization
process.

• Automated conversion of the legacy application. Automated conversion is an
attractive option when new technology or process improvement initiatives require
legacy software tests to be converted to another language, for example to improve
the test process itself or its environment. The current technology for legacy
migration allows organizations to automate the migration process with lower risk
and in a shorter time.

The need for better test management environments grows with the size of the
testing effort. Organizing test artifacts and resources is a necessary part of test man-
agement and is facilitated in our reengineering process by dispatching elements of the
legacy TPs into its new TTCN-3 implementation— in modular style. Our code-to-code
migration activity is iterative as it requires a repetition of activities to migrate suc-
cessfully the code. The process is composed of the following sub-activities:

• Analysis of the legacy TPs to gain understanding of the code to be translated to
TTCN-3;

• Code translation according to transformation rules, from legacy to TTCN-3, defined
early in the analysis activity; and

• Deployment and Verification of the migrated TPs to ensure their satisfaction of the
legacy TCs, and equivalence to the legacy TPs.

These sub-activities are shown in Fig. 3 and will be explained as we progress after
an overview of the TTCN-3 language below.

TTCN-3 is a standardized language used to write human and machine-readable test
scripts; it is designed specifically for conformance testing. The semantics of TTCN-3 is
clearly and precisely specified. A TTCN-3 test suite can be structured into several
modules. A module is a top-level container for code which is composed of an optional
control part and an arbitrary number of definitions. A TTCN-3 “testcase” is a behavior
description of how to stimulate the SUT. Each TTCN-3 testcase runs on components
that communicate with each other through ports. A TTCN-3 model is composed of an
Abstract Layer and a Concrete Layer. The Abstract Layer can host a test suite that is
composed of several modules to describe the test to be executed. The Concrete Layer is
responsible for communicating with the SUT, coding and decoding the exchanged
messages during the test execution.
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3.1.1 Analysis of the Legacy Code
It is essential to the success of a migration to understand the functionality of the legacy
software tests and to know how the SUT interacts via its various interfaces. A typical
TP written in Ant/XML is composed of one or more targets where each target may
control several interfaces via sending and verifying commands. For example, if a TP
needs to sense some data, it specifies the interface to be queried, sends the required
commands and reads the result for verification.

After analyzing the legacy TPs, we extracted valuable information that is located
exclusively in the TPs; this information helped us to establish principles for code
migration from Ant/XML to TTCN-3. We determined that a legacy TP contains
instructions pertaining to three aspects: Test Verification, Test Component, and Test
Action. This decomposition of a legacy TP can support the translation to TTCN-3 in a
modular manner. In our translation scheme, the Test Verification, Test Component and
Test Action are respectively translated to Test Data, Test Component and Test
Behavior modules in TTCN-3. The transformation rules should convert legacy TP code
while preserving the semantics. We found that core TTCN-3 contains equivalent
semantics for most Ant/XML language elements, such as sending data, verifying
responses, representing regular expression, defining interfaces and connections, etc.;
however, since the legacy application did not use an XML schema, the data types of the
legacy TP could not easily be rule-transformed. Thus, neither type checking nor value
checking could be performed.

3.1.2 Code Migration
We developed a language translator tool to migrate the TPs automatically to three
TTCN-3 modules. The resulting modules along with the Type module constitute an
executable TTCN-3 TP that is equivalent to the Ant/XML TP. The Type module is

TP translator
tool

Migrated TPs 
(TTCN-3)

Compile 
and Build

Analyze
ErrorsNo

Improve
tool

Deploy and Test

Compiled
TPs (TTCN-3 )

Yes

Equivalent? No
Analyze

Non-
equivalence

Investigate
difference

Equivalent
TPs (TTCN-3)

Yes

Improve
tool

Legacy 
TPs

Translation rules
Ant/XML to 

TTCN-3

Analyze
Legacy

TPs

Fig. 3. Code-to-code migration sub-activities
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produced manually by analyzing the SUT inputs and outputs and the legacy TCs and
TPs as shown in Fig. 4. The architecture of the translator tool combines the following
elements:

• Transformation Rules: a number of rules to transform each Ant/XML construct to a
one or more equivalent constructs in TTCN-3. (one-to-many transformations are
possible)

• Parser: reads legacy TP in order to generate syntactic element tokens encountered in
the TP.

• Converter: based on transformation rules, it transforms the syntactic element,
returned by the Parser, to functionally-equivalent code to the generator.

• Generator: writes the generated TTCN-3 code, produced by the Converter, dis-
patched in each of the corresponding modules.

Table 1 shows the transformation rules. Third column describes how the TP legacy
semantic is preserved using TTCN-3 syntax.

Having a Translator Tool is a key success factor in the migration process. It enables
a high degree of automation and meets economic and timeframe objectives, such as
lower cost, shorter time-to-market, consistent style, and good quality code. However,
the migrated TTCN-3 modules define an abstract test suite, i.e. components residing in
the TTCN-3 Abstract Layer. The migrated code lacks any concrete implementation-
specific information, such as how messages are encoded or how communication with
the SUT actually takes place [21]. In order to execute the TTCN-3 modules, Codecs
and SUT Adapters must be provided. These parts reside in the Concrete Layer and
allow tests to be encoded into a format understood by the SUT and to be executed by it.

3.1.3 Migrate Real-Time TPs
Real-time embedded applications require testing the functional aspect and the timing
aspect of the requirements. The functional aspect of SUT interfaces is concerned with
the sending and receiving of the messages; it is verified by checking the message values
and their order. On the other hand, the real-time requirements require observing time at
the communication ports and associating time with stimuli and responses. Testing
real-time behavior remains a challenge as the test system needs to be time-deterministic
[18], in order to verify accurately the response time, sending time, latency, delay,
jitter, etc.

Translator Tool
Parser

Converter

Generator

Analysis of 
legacy code Transformation Rule #1

Transformation Rule #2
….
Transformation Rule #n

TTCN-3
Data

TTCN-3
Component

TTCN-3
Behavior

TTCN-3
Type 

module

TP 
(Ant/XML)
---------------
---------------
---------------

Fig. 4. Language translator tool
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Table 1. Transformation rules to convert Ant/XML and TTCN-3 languages along with
transformation rules.

Legacy 
code 
element

Equivalent construct in 
TTCN-3

Transformation rules

<project 
name = 
“str”>

module <str_Template> { }
module <str_Behavior> { }
module <str_Configuration> 
{ }

Rule # 1: project element is translated to three module
constructs which together compose a full TP in TTCN-
3. The project name = str is used as a prefix with 
“Template”, “Behavior” or “Configuration” to 
designate each TTCN-3 module. If the project name
contains special characters such as dot or space, they 
are replaced by underscores. 

<target
name = 
“str”>

testcase <target_str> runs on
MTCType system
SystemType 

Rule # 2: target element is translated to a testcase
construct, and the target name is prefixed with the 
string target_

The testcase will contain the action and verify 
constructs (stimulus and response)

<target
name= “all”

depends = 
“str1, str2, 
…, strn”/>

control {
execute (target_str1() );
execute (target_str2() );
execute (target_strn() );
}

Rule # 3: target name = all is translated to a control
construct, and the intermediate targets, str1, str2, … 
separated by commas, identified in depends are 
translated to a sequence of execute statements such as 
execute (target_str1() ); in the control construct.

interface
port = 

“name”

type port interface_name
message {
in sending_msg;
out receiving_msg; }
type component interfaceType 
{
port interface_x interface; }

Rule # 4: Every interface is mapped to a message-based 
port and attached to a component. 

The interface port = name is translated to a type port
message-based construct and attached to a type
component construct. 

function action (name, 
command, str1, …, strn ) runs 

Rule # 5: action elements are translated to functions
and function calls constructs. The action parameters 
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Previously, we transformed Ant/XML TPs, which test the functional behavior of
the SUT, to TTCN-3. Now, we discuss how Ant/XML and TTCN-3 handle the
real-time. The Ant/XML test system, without any additional mediating devices, is
unable to execute precise real-time tests scenarios. The wall clock time is measured at
scripting level, i.e. not at the external test adapters. Ant/XML measures time via tstamp
operation returning time with a millisecond resolution; it controls timing via sleep and
waitfor operations.

Similarly, the core language of TTCN-3 was not originally conceived with
real-time focus in mind. The first problem is the precision of time when it is recorded or
checked by the test system or when it is associated with certain events. There is the
semantic of timers that was not intended for suiting real-time properties, but conceived
only for catching (typically long-term) timeouts [19].

<action key
= “str1”, 

“str2”, …, 
strn />

on componentType {
….
portName.send(command, 
str1, …, strn);
….
}

command, name, str1, …, strn are passed as formal 
parameters to the function definition. The parameter 
name represents the interface name where command 
represents the input to send. Some actions take 
additional parameters to send the command, they can be 
represented by str1, …, strn. The parameter portName 
represents the port via which the input to SUT is sent. 
The action with its arguments in the legacy TP 
represent a stimulus to send to the SUT

< verify
query = 
“str1” 
value= 

“str2” />

template component type 
verifyStep := {str1 := pattern
str2 }
function matchResult(verify, 
portName) runs on
componentType { 
alt {
[] portName.receive(verify) {

setverdict(pass); }
[] portName.receive {

setverdict(fail); }
[] replyTimer.timeout {

setverdict(inconc, "No 
response from 

SUT") } }

Rule # 6: verification is translated to template
construct named verify. One template can host several 
verifications for a given step. Then, the construct 
verify is translated to a function to handle the 
alternative sequences. In the legacy TP, a comparison 
between the expected value and returned one is 
performed: verify query = “str1” value= “str2”

The TTCN-3 TP migrates the expected values and store 
them in templates w.r.t to REGEXP used in the legacy. 
Then, the returned values are matched against the 
expected ones to issue a verdict.

< macrodef 
name = 

“MacroN”
/>

action

<MacroN
interface = 

“interface_n
ame, para1, 
para2, …, 
paran” />

function MacroN 
(interface_name, para1, para2, 
…, paran) runs on
componentType {
…}
MacroN( interface_name, 
para1, para2, …, paran);

Rule # 7: macros elements are translated to functions
and function calls constructs. The macros parameters
interface_name, para1, para2, …, paran are passed as 
formal parameters to the function definition. A macro 
may contain control statement such as looping, if, else. 
These statements are mapped to their equivalent in 
TTCN-3
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A tstamp task is mapped to a TTCN-3 timer declaration followed by start timer
operation. Ant/XML measures duration by computing time difference between two
tstamp tasks. This can be mapped to TTCN-3 start timer and read timer operations.

TTCN-3 was extended with set of constructs for real-time testing RT-TTCN-3 [10]
that introduces a mechanism to store the arrival time of messages, procedure calls at
system adapter level and to control the timing for the stimulation. We have not yet
attempted to use RT-TTCN-3. For now, only the core language is used in our pilot
project.

3.1.4 Deployment and Testing of a Migrated TPs
As illustrated in Fig. 3, the code migration process is an iterative approach, as the
Translator Tool needs improvement and corrections after an unsuccessful attempt to
migrate the functionality. The migrated code may not compile or may fail to link to
produce a build; in such cases an analysis is performed to improve the tool and fix the
problem. It is essential that the legacy and migrated test suites are functionally
equivalent and have full consistency in their verdicts that are produced by applying the
same stimuli. In order to properly evaluate their conformance, the migrated code should
not be manually modified during the process by diverging from the TC. Any
enhancement should be added only after a successful migration has been declared.
Accordingly, as shown in Fig. 5, testing the functional equivalence can be determined
by comparing the original and migrated test verdicts’ and the SUT’s observable states
— actions triggered by SUT in response to events sent by the TP.

The correctness relationship holds when the migrated TPs, for the same test input,
make SUT behave the same way as legacy TPs do. In other words, the legacy TPs are
used as an oracle version, if the behavior of the SUT differs when stimulated by the
migrated TPs, then the correctness relationship breaks and the tester needs to analyze
the problem and investigate the difference. Annex 1 shows the TTCN-3 test suite
migrated from the legacy TP in Fig. 2. After a successful code equivalence migration to
TTCN-3, the second phase starts by reverse-engineering the migrated code in TTCN-3
to abstract models in TDL.

SUT

Legacy
result

Migrated 
result

Output Output

Compare for SUT
output conformance

Test OutputTest Output

Test Input

Compare for SUT 
states conformance

TP 
(Ant)

---------------
---------------
---------------

TP 
(TTCN-3)

---------------
---------------
---------------

Fig. 5. Validation of legacy and migrated test suites equivalence
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3.2 Code-to-Model

In the second phase of the reengineering process, we obtain the TCs by
reverse-engineering the migrated TTCN-3 TPs. In most industrial domains, a test can
be conceived at two levels of abstraction: a test specification (or test case) and a test
implementation (a test script or procedure). Our goal is to abstract the latter to obtain
the former. Here, the test implementation is the migrated TTCN-3 TPs containing
concrete information. It is often considered useful to express TPs as stimulus-response
scenarios. This is the path that we explore here using TDL.

Let’s consider the modules of a TP.

• The Test Behavior module is composed of test events (stimuli and responses as
interactions) that express the test behavior.

• The Test Data module contains information about the test input and the expected
test output.

• The Test Component module consists of a set of inter-connected test components
with well-defined communication ports and an explicit test system interface.

Next we consider a TC. It should use abstract types and instances to refer to test
data, and should describe the system components and their actions and interactions
with a minimum of details. In our project, to raise the level of test specification, we
choose the TDL notation. It has the benefit of being complementary to TTCN-3. For a
given test, a description is specified in TDL, whereas TTCN-3 is used to define a
detailed implementation. An overview of the TDL concept follows.

TDL is a new language for the specification of test descriptions and the presentation
of test execution results [10]. The introduction of TDL is being driven by industry to
fill the gap between the high-level expression of what needs to be tested i.e., the test
purposes, and the complex coding of the executable TP in TTCN-3 [18]. TDL is used
primarily— but not exclusively— for functional testing, its major benefits include:
high-quality testing process through scenario design of test cases (test descriptions) that
are easy to review by non-testing experts. The TDL language was designed on three
central concepts [10]: (1) a Meta-Modeling principle that expresses its abstract syntax,
(2) a user-defined Concrete Syntax for different application domains, and (3) the TDL
semantics that can be associated to the meta-model elements. Any minimal TDL
specification consists of the following major elements:

• A set of Test Objectives that specify the reason for designing either a Test
Description or a particular behavior of a Test Description. It can be written as a
simple text in NL and it can be complemented with tables and diagrams;

• A Test Configuration, which is a set of interacting components (tester and SUT) and
their interconnection;

• A set of Data Instances used in the interactions between components in a test
description; and

• A set of Test Descriptions to describe one or more test scenarios based on the
interactions of data exchanged between tester and SUT.

In order to obtain the TC (TDL specification) from the TP (TTCN-3 modules), we
developed transformation rules to define TC elements from the TTCN-3 TPs’. These
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rules are meant for human processing; they are based on the equivalence between
elements of both languages. The rules aim to remodel the TTCN-3 modules into more
abstract TDL elements. The language-sensitive editor understands the concrete TDL
syntax, based on the TDL meta-model.

Next, we show how each TDL element is derived from its corresponding TTCN-3
module by applying these rules. However, extracting the TDL Test Objectives cannot
be rule-based since the TTCN-3 TPs do not have a concrete representation of the Test
Objective. Nevertheless, the test objectives can be extracted from the legacy TCs and
copied in TDL corresponding elements.

3.2.1 Remodel Test Data Sets
The concrete data definition, stored in the TTCN-3 Test Data module (TestData.ttcn3),
is mapped to TDL Data Instances using TDL elements that link the data aspects
between TDL and TTCN-3. These Data Instances are grouped in Data Sets and are
considered as abstract representation of the corresponding concepts in a concrete type
system.

3.2.2 Remodel Test Configuration
In a TDL specification, the Test Configuration element consists of a Tester, SUT
components and a Gate. The corresponding TTCN-3 Component module contains
equivalent objects with many more details. Specifically, it consists of a set of inter-
connected test components with well-defined communication ports and an explicit test
system interface. TDL does not have a receive construct, instead it uses a send con-
struct for the interaction between a Tester and the SUT. Therefore, the mapping of TDL
Tester and SUT components is validated with the TTCN-3 interaction.

3.2.3 Remodel Test Description
The Test Description element in the TDL specification language defines the TC
behavior. The enclosed scenario is mainly composed of actions and interactions
between the Tester and the SUT components.

In the TTCN-3 Test Behavior module, the action is a function implementation or
physical setup. The interaction is represented as a message being sent (from a source)
or received (from the target). We remodeled the interaction and the action to their
equivalent in TDL by applying the rules listed in Table 2. In the Test Behavior module,
numerous sequences of events are possible due to the reception and handling of
communication timer events. The possible events are expressed as a set of alternative
behaviors and denoted by the TTCN-3 alt statement. Each TTCN-3 object in the Test
Behavior is remodeled to an equivalent TDL construct by applying the transformation
rules. In our experimentation, we used a TDL Editor to edit and validate the syntax of
the TDL specifications.
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Table 2. Transformation rules from TTCN-3 to TDL based on the proposed concrete syntax.

TDL Meta-model 
elements

(abstract syntax)

TTCN-3 
statements

Our proposed 
TDL 

concrete syntax

Description of 
transformation from 

TTCN-3 to TDL 

TestConfiguration module <tc_name> { 
}

Test Configuration
<tc_name>

Map to a Test Configuration 
statement with the name < 
td_name >

GateType

type port
<port_type> message 
{
}

Gate Type <port_type>
accepts <Data_Set_name> 

Map to a Gate Type statement 
with the name <port_type> that 
accepts Data Set elements

ComponentType

type component 
comp_type{
port <port_type> 
<port_name>;
}

Component Type 
<comp_type> { gate types : 
<port_type> Map to a Component Type 

statement with the name 
<comp_type> and associate a 
<port_type> to it.

instantiate <comp_instance> 
as Tester of type
<comp_type> having { gate
<gate_name> of type
<port_type> ; }

ComponentType

type component 
system_comp_type{
port <port_type> 
<port_name>;
}

Component Type 
<comp_type> { gate types : 
<port_type>

Map to a Component Type 
statement with the name 
<system_comp_type> and 
associate a <port_type> as a 
port of the test system interface 
to it.

instantiate
<system_comp_type> as 
SUT of type <comp_type> 
having { gate <gate_name> 
of type <port_type> ; }

Connection

map (mtc: 
<comp_type>, 
system
<system_comp_type
>)

connect <comp_type> to 
<system_comp_type >

Map to a connect statement 
where a test component is 
connected to test system 
component. 

TestDescription

module <td_name> {
import from
<dataproxy> all;
import from
<tc_name> all;
}

Test 
Description(<dataproxy) 
<td_name> { 
use configuration: 
<tc_name>; { }
}

Map to a Test Description 
statement with the name 
<td_name >. The <DataProxy> 
element passed as formal 
parameters (optional) is 
mapped from an import 
statement of the <DataProxy> 
to be used in the module. The 
import statement of the Test 
Configuration <tc_name> is 
mapped to use configuration 
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TDL Meta-model 
elements

(abstract syntax)

TTCN-3 
statements

Our proposed 
TDL 

concrete syntax

Description of 
transformation from 

TTCN-3 to TDL 
property that is associated with 
the 'TestDescription' 

Alternative
Behaviour

alt {} alternatively { } Map to alternatively statement 

Interaction

<comp_name_source
>.send(<concreteDat
a>)

<comp_name_source> sends
instance < data_name > to
<comp_name_target>

Map to a sends instance 
statement with respect to the 
sending component

<comp_name_source
>.receive(<concreteD
ata>)

<system_comp_name_sourc
e> sends instance < 
data_name > to
<comp_name_target>

Map to a sends instance 
statement when the sending 
source is SUT component

VerdictType verdicttype
<verdict_value>

Verdict <verdict_value>

Map <verdict_value> that 
contains the values: 
{inconclusive, pass, fail}to its 
corresponding value

TimeUnit
time_unit {1E-9,1E-
6, 1E-3, 1E0, 6E1, 
36E2 

Time Unit <time_unit>

<time_unit> contains the 
following values: 
{tick,nanosecond,microsecond,
miliisecond,second,minute,hour
}

VerdictAssignment setverdict 
(<verdict_value>)

set verdict to
<verdict_value>

Map to a set verdict to 
statement 

Action function 
<action_name>()

perform action
<action_name>

Map to perform action 
statement

Stop stop stop
Map to a stop statement within 
alternatively statement

Break break break
Map to a break statement 
within alternatively statement

TimerStart <timer_name>.start(t
ime_unit);

start <timer_name> for
(time_unit) Map to a start statement

TimerStop <timer_name>.stop; stop <timer_name> Map to a stop statement

TimeOut <timer_name>.timeo
ut;

<timer_name> times out Map to a times out statement

Quiescence/Wait

timer <timer_name>
<timer_name>.start(t
ime_unit);
<timer_name>.timeo
ut

is quite for (time_unit)
waits for (time_unit)

Map to is quit for statement or 
to waits for 

InterruptBehaviour stop interrupt Map to interrupt statement

BoundedLoop
Behaviour

repeat repeat <number> times

Map to repeat statement. The 
repeat is used as the last 
statement in the alternatively 
behavior.

DataInstance type_keyword 
<data_name>

Data Set <any_name> {
instance <data_name> }

Map any <type_keyword> to 
an instance and group it in Data 
Set element
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3.2.4 Model Real-Time in TDL
Previously, we mapped real-time elements enclosed in legacy TP to TTCN-3 timers’
objects. TDL defines time package to express:

• A Time instance or time duration is expressed by a real positive value. The unit of
Time instance is described by predefined instances for the TimeUnit. There are two
Time Operation that can be applied on Tester components or on Tester gate:
– Wait: defines the time duration that a Tester waits; and
– Quiescence: defines the time duration during which a Tester shall expect no

input from a SUT;
• A Time Constraint element resides within a test description; it is used to express

timing requirements over two or more atomic behavior elements; and
• A Timer element defines a timer that is used by the following Timer Operation:

– TimerStart: it sets the period property to define the duration of the timer from
start to timeout. The Timer changes from idle to running state;

– TimerStop: it stops a running Timer, the state of the Timer becomes idle; and
– TimeOut: it specifies the occurrence of a timeout event when the period set by

the TimeStart operation has elapsed. The Timer changes from running to idle
state.

The TDL time package can be modeled from the TTCN-3 timer operations as
shown in Table 2 that illustrates the transformation rules from TTCN-3 to TDL based
on the versions in [9, 10].

4 Conclusion

The modernization of software tests to a new platform is often pressured by business
requirements to reduce the cost and effort of testing. In this project, we automatically
restructured legacy TPs, written as Ant/xml files into the TTCN-3 language that pro-
vides strong typing, structured constructs and for modular code. This migration
enforced coding standards and offered a more readable, simple to modify and easy to
understand test code. Next, we reengineered the code and data to a higher level of
abstraction to obtain (model-driven) TPs. Our overarching goal is to support test
automation, to reduce the effort involved in testing and to lower maintenance cost while
meeting software tests’ evolution requirements.
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Annex 1

The migrated Heart Rate Test Procedure in TTCN-3
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