
Web Services for Radio Resource Control

Evelina Pencheva(B) and Ivaylo Atanasov

Technical University of Sofia, Sofia, Bulgaria
{enp,iia}@tu-sofia.bg

Abstract. Mobile Edge Computing (MEC) supports network function
virtualization and it brings network service intelligence close to the net-
work edge. MEC services provide low level radio and network information
to authorized applications. Communication between MEC services and
applications is according to the principles of Service–oriented Architec-
ture (SOA). In this paper, we propose an approach to design application
programming interfaces for MEC Web Services that may be used by RAN
analytics applications to adapt content delivery in real–time improving
quality of experience to the end users. Web Service interfaces are mapped
onto network protocols.

Keywords: Mobile Edge Computing · 5G · Radio Resource Control ·
Radio Network Information Services · Service oriented Architecture ·
Behavioral models

1 Introduction

Mobile Edge Computing (MEC) is a hot topic in 5 G. MEC supports network
function virtualization and it brings network service intelligence close to the net-
work edge [1]. MEC enables low latency communications, big data analysis close
to the point of capture and flexible network management in response to user
requirements [2,3]. MEC is required for critical communications which demand
processing traffic and delivering applications close to the user [4,5]. MEC pro-
vides real-time network data such as radio conditions, network statistics, etc.,
for authorized applications to offer context-related services that can differentiate
end user experience. Some of the promising real-time MEC application scenarios
are discussed in [6].

MEC use cases and deployment options are presented in [7]. The European
Telecommunications Standards Institute (ETSI) defined MEC reference archi-
tecture, where MEC deployment can be inside the base station or at aggregation
point within Radio Access Network (RAN) [8]. Minimal latency for many appli-
cations can be achieved by integrating MEC server in base station [9,10].

The communications between applications and services in the MEC server
are designed according to the principles of Service-oriented Architecture (SOA).
The Radio Network Information Services (RNIS) provide information about the
mobility and activity of User Equipment (UE) in the RAN. The information
includes parameters on the UE context and established E-UTRAN Radio Access
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

A. Longo et al. (Eds.): IISSC 2017/CN4IoT 2017, LNICST 189, pp. 188–198, 2018.

https://doi.org/10.1007/978-3-319-67636-4_20



Web Services for Radio Resource Control 189

Bearer (E-RAB), such as Quality of Service (QoS), Cell ID, UE identities, etc.
This information is available based on the network protocols like Radio Resource
Control (RRC), S1 Application Protocol (S1-AP), and X2 Application Protocol
(X2-AP) [11].

ETSI standards just identified the required MEC service functionality, but
do not define Web Service application programming interfaces (APIs). As far as
our knowledge there is a lack of research on MEC service APIs, and the related
works consider MEC applications that may use MEC services. In this paper we
propose an approach to design APIs of SOA based Web Services for access to
radio network information.

The paper is structured as follows. Section 2 provides a detailed Web Service
description including definitions of data structure, interfaces, interface operation
and use cases. Section 3 describes functionality required for mapping of Web
Service interfaces onto network protocols. Device state models are described
and formally verified. The conclusion summarizes the authors’ contributions and
highlights the benefits of the proposed approach.

2 Detailed Service Description

2.1 Device Context Web Service

Device Context service provides access to the UE context including EPS Mobility
Management (EMM) state, EPS Connectivity Management (ECM) state, RRC
state, UE identities, and Cell-ID. This information is provided through:

– Request for the UE context of a device;
– Request for the UE context of a group of devices;
– Notification change in the context of a device;
– Notification of device context on a periodic basis.

The response to a request for a group of devices may contain a full or partial
set of results. The results are provided based on a number of criteria including
number of devices for which the request is made and amount of time required to
retrieve the information. Additional requests may be initiated for those devices
for which information was not provided.

The EMM states describe mobility management states that result from the
Attach and Tracking Area Update (TAU) procedures. The EMMstatus is of
enumeration type with values of EMM-Deregistered (device is deregistered and
it is not accessible) and EMM-Registered (device is registered to the network).
The ECM states describe the signaling connectivity between the device and the
core networks. The ECMstatus is of enumeration type with values of ECM-
Idle (there is no non-access stratum signaling connection between the device
and the network) and ECM-Connected (there is a non-access stratum signaling
connection). The RRC states describe the connection between the device and the
RAN. The RRCstatus is also of enumeration type with values of RRC-Idle (there
is no RRC connection between the device and the network), and RRC-Connected



190 E. Pencheva and I. Atanasov

(an RRC connection between the device and the RAN is established). The UE
identity information is represented by C-RNTI (Cell Radio Network Temporary
Identity) which identified the RRC connection. The Cell-ID uniquely identifies
the E-Node B which currently serves the device.

StatusData structure contains the device context information. As this can be
related to a query of a group of devices, the ResultStatus element is used. It is of
enumerated type with values indicating whether the information for the device
was retrieved or not, or if an error occurred. Table 1 illustrates the StatusData
elements.

Table 1. Structure of device status data

Names Types Description

DeviceAddress xsd:anyURI Address of the device to which the UE context
information applies

ReportingStatus ResultStatus Status of retrieval for this address

CurrentEMMstatus EMMstatus EMM status of the device if the
ReportingStatus is equal to Retrieved

CurrentECMstatus ECMstatus ECM status of the device if the
ReportingStatus is equal to Retrieved

CurrentRRCstatus RRCstatus RRC status of the device if the
ReportingStatus is equal to Retrieved

CellID integer Cell-ID of the ENodeB which serves the device

CRNTI integer C-RNTI of the device

The Device Context Web Service supports the following interfaces:
The UEContext Interface requests the context information for a device. It

supports two operations. The GetUEContext operation is intended to retrieve
the context for a single device. The GetUEContextForGroup operation initiates
a retrieval of context data for a group of devices.

The UEContextNotificationManager interface may be used to set up
notifications about the events related to given device context. The operation
StartPeriodicNotifications makes periodic notifications available to applica-
tions (the operation defines maximum frequency of notifications and the length of
time notifications occur for). The StartTriggeredNotification operation makes
triggered notifications available to applications (the operation defines maximum
frequency of notifications, maximum number of notifications, period of time noti-
fications are provided for, and the criteria). The EndNotifications operation
ends either type notifications.

The interface to which notifications are delivered is UEContextNotification.
It supports the following operations. The UEContextNotification operation is
used to notify the application when the context of the monitored device changes.
The UEContextError operation is used to inform the application that the noti-
fications for a device or a group of devices are cancelled by the Web Service.



Web Services for Radio Resource Control 191

The UEContextEnd operation informs the application that the notifications
have been completed when the duration or count for notifications have been
completed. Figure 1 shows the sequence diagram for on demand access to device
context information and triggered device context notification.

Fig. 1. Sequence diagram for on demand access to device context and triggered noti-
fications

The Application queries for the device context and receives its context. The
Application generates a correlator and starts triggered notifications. The Web
Service sets up a notification to monitor changes in the device context. A noti-
fication is delivered to the Application when the device context changes. When
the notifications are completed, the Application is notified.

2.2 Device Bearer Web Service

Device Bearer service provides access to information about active Radio Access
Bearers (RABs) of the device and allows applications to dynamically manipulate
device RABs. The information about devices RABs is provided on demand,
periodically or upon event occurrence. An authorized Application may request
RAB establishment, modification or release.



192 E. Pencheva and I. Atanasov

The Device Bearers Web Service supports the following interfaces:
The ApplicationBearerControl interface provides functionality for querying

active RABs of the device, applying or modifying the QoS available on device
connections. The GetActiveRAB operation retrieves the active RABs of the
device. The PutQoS operation allows the Application to request a temporary
QoS feature to be set up on the device connection (the operation may cause an
establishment of a new RAB for the device). The AlterQoS operation allows the
Application to modify the configurable service attributes on active temporary
QoS feature. The PutOffQoS operation allows the Application to release a tem-
porary QoS feature (this may cause the RAB bearer release). The Disconnect
operation allows the Application to disconnect the device session (the operation
causes release of all active RABs).

The BearerNotificationManager interface is used by the Applications to
manage their subscriptions to notifications. The StartPeriodicNotification
operation is used to register the Application interest in receiving notifications
periodically. Examples of notifications are bearer establishment/ modification/
release, all bearers are lost, radio link failure. The StartTriggeredNotification
operation is used to register the Application interest in receiving notifications
about bearer related events. The EndNotifications operation is used by the
Application to cancel any type of notifications.

The BearerNotification interface provides operation for notifying the
Application about the bearer related events. The RABNotification operation
reports a network event that has occurred against device active RABs. The
RABError operation sends an error message to the Application to indicate the
notification for a device is cancelled by the Web Service. The RABEnd opera-
tion informs the Application that the notifications have been completed when
the duration expires or the count limit for notifications has been reached.

The Bearer interface supports one operation GetRABAttributes which
allows the Application to query about device’s bearer attributes.

3 Implementation Issues

As a mediation point between MEC applications and RAN the MEC server,
which provides Web Services, needs to maintain the network and the application
views on the device status. These views need to be synchronized. Furthermore,
the MEC server needs to translate the Web Service interface operations into
respective events in the network and vice versa.

3.1 Device State Models

Figure 2 shows the device state model as seen by the MEC server.
Table 2 provides a mapping between Web Services operations and network

events.
Figure 3 shows the device state model as seen by the application.



Web Services for Radio Resource Control 193

Fig. 2. Device’s state model as seen by the MEC server

Table 2. Structure of device status data

Web service operation Network events

UEContextNotification Detach, Attach Reject, TAU Reject, Radio Link Failure,

UE Power Off, New Traffic, TAU Request, Cell
reselection

RABNotification Device initiated bearer
establishment/release/modification

PutQoS Application initiated bearer establishment

AlterQoS Application initiated bearer modification

PutOffQoS Application initiated bearer release

Disconnect Application initiated data session release

The proposed state model representing the Application view on the device
state includes the following states.

In AppDeregistered state, the device is not registered to the network. The
respective states in the network are RRC-idle, EMM-deregistered and ECM-idle.
During attachment to the network (Attach), the network notifies the Applica-
tion about the change in the device context (NUEcontext), the device moves to
AppActive state and the respective network states are RRC-connected, EMM-
registered and ECM-connected. After successful mobility management event
without data transfer activity e.g. TAUAccept, the network notifies the Appli-
cation about the change in device context (NUEcontext), and the Application
considers the device being in AppIdle state, where the respective network states
are RRC-idle, EMM-registered and ECM-idle. In case of unsuccessful mobility
management event (e.g. AttachReject, TAUReject), the Application is notified
(NMMrej) and the device moves to AppDeregistered state.



194 E. Pencheva and I. Atanasov

Fig. 3. Device’s state model as seen by the MEC application

Application may decide to apply specific QoS (AppBearerEst) and it invokes
the PutQoS operation. In AppActive state, the Application may decide to
modify the established bearer (AppBearerMod) or to release it (AppBearerRel)
and in these cases it invokes AlterQoS or PutOffQoS operations respec-
tively. In AppActive state, the Application may decide to release all bearers
i.e. to disconnect the device (AppDiscon) and in this case it invokes Disconnect
operation. The Application may also receive notifications about bearer related
events (NBearer), e.g. notifications about device-initiated bearer establishment
(DeviceBearerEst), device-initiated bearer modification (DeviceBearerMod), and
device-initiated bearer release (DeviceBearerRel).

During active data transfer, the device is in AppActive state. In this state,
the Application may decide to apply specific QoS (AppBearerEst) and it invokes
the PutQoS operation. In AppActive state, the Application may decide to
modify the established bearer (AppBearerMod) or to release it (AppBearerRel)
and in these cases it invokes AlterQoS or PutOffQoS operations respec-
tively. In AppActive state, the Application may decide to release all bearers
i.e. to disconnect the device (AppDiscon) and in this case it invokes Disconnect
operation. The Application may also receive notifications about bearer related
events (NBearer), e.g. notifications about device-initiated bearer establishment
(DeviceBearerEst), device-initiated bearer modification (DeviceBearerMod), and
device-initiated bearer release (DeviceBearerRel).

If the Application is notified that all bearers are lost (NBearers), it may
initiate data session release on behalf of the device (Disconnect) and the device
state becomes AppIdle. In AppActive state, when the network detects device
inactivity, the Application is notified (NUEcontext) and it considers the device
being in AppIdle state.

In case the device detach (Detach) or device power is off (DevicePowerOff ),
the Application is notified (NUEcontext) and it considers the device being in
AppDeregistered state. In case of radio link failure, the network notifies the
Application (NFailure) and the device moves to AppDeregistered state.



Web Services for Radio Resource Control 195

3.2 Formal Verification of Device State Models

We use the mathematical formalism of Labeled Transition Systems (LTSs) to
describe the device state models. An LTS is defined as a quadruple of set of
states, set of inputs, set of transitions, and an initial state.

By DApp =
(
SApp, InpApp,→App, s

App
0

)
it is denoted an LTS representing

the Application’s view on device state where:

SApp = {AppDeregistered,AppActive,AppIdle} ;
InpApp = {NMMrej , NBearer, NBearers, NFailure, NUEcontext, AppBearerEst,

AppBearerMod, AppBearerRel, AppDiscon} ;
→App =

{
(AppDeregisteredNUEcontext AppActive)

[
τA
1

]
, (AppActive

AppBearerEst AppActive)
[
τA
2

]
, (AppActiveAppBearerMod

AppActive)
[
τA
3

]
, (AppActiveAppBearerRel AppActive)

[
τA
4

]
,

(AppActiveNBearer AppActive)
[
τA
5

]
, (AppActiveNMMrej ,

AppDeregistered)
[
τA
6

]
, (AppActiveNBearers AppDeregistered)[

τA
7

]
, (AppActiveNFailure AppDeregistered)

[
τA
8

]
, (AppActive

NUEcontext AppIdle)
[
τA
9

]
, (AppActiveNBearer AppIdle)

[
τA
10

]
,

(AppActiveAppDiscon AppIdle)
[
τA
11

]
, (AppIdleNUEcontext

AppActive)
[
τA
12

]
, (AppIdleNBearer AppActive)

[
τA
13

]
, (AppIdle

NBearerEst AppActive)
[
τA
14

]
, (AppIdleNUEcontext AppDeregistered)[

τA
15

]
, (AppIdleNFailure AppDeregistered)

[
τA
16

]}
;

sApp
0 = {AppDeregistered} .

Short notations of the transitions are given in brackets.
Let us denote by Deregistered the device states in the network EMM-

Deregistered, ECM-Idle, RRC-Idle, by Connected the device states in the net-
work EMM-Connected, ECM-Connected, RRC-Connected, and by Idle the
device states in the network EMM-Registered, ECM-Idle, RRC-Idle.



196 E. Pencheva and I. Atanasov

By DMEC =
(
SMEC , InpMEC ,→MEC , sMEC

0

)
it is denoted an LTS repre-

senting the MEC server’s view on device state where:

SMEC = {Deregistered, Connected, Idle} ;
InpMEC = {CellSelection, Attach,Detach,AttachReject, TAUReject, TAUAccept,

RadioLinkFailure,DevicePowerOff ,DeviceBearerEst, CellReselection,

DeviceBearerMod,DeviceBearerRel, PutOffQoS,GetActiveRAB,

AlterQoS,Disconnect,Handover,DeviceNewTraffic, TAURequest,

PutQoS,DeviceInactivity} ;
→MEC =

{
(DeregisteredCellSelection Deregistered)

[
τMEC
1

]
, (Dere−

gisteredAttachConnected)
[
τMEC
2

]
, (ConnectedDeviceBearerEst

Connected)
[
τMEC
3

]
, (ConnectedDeviceBearerMod Connected)[

τMEC
4

]
, (ConnectedDeviceBearerRel Connected)

[
τMEC
5

]
,

(ConnectedGetActiveRAB Connected)
[
τMEC
6

]
, (Connected

PutQoS Connected)
[
τMEC
7

]
, (ConnectedAlterQoS Connected)[

τMEC
8

]
, (ConnectedPutOffQoS Connected)

[
τMEC
9

]
,

(ConnectedHandover Connected)
[
τMEC
10

]
, (ConnectedDetach

Deregistered)
[
τMEC
11

]
, (ConnectedAttachReject Deregistered)[

τMEC
12

]
, (Connected TAUReject Deregistered)

[
τMEC
13

]
,

(ConnectedRadioLinkFailure Deregistered)
[
τMEC
14

]
,

(ConnectedDevicePowerOff Deregistered)
[
τMEC
15

]
, (Connected

DeviceInactivity Idle)
[
τMEC
16

]
, (Connected TAUAccept Idle)

[
τMEC
17

]

(IdleDeviceNewTraffic Connected)
[
τMEC
18

]
, (Idle TAURequest

Connected)
[
τMEC
19

]
, (Idle PutQoS Connected)

[
τMEC
20

]
, (Idle

CellReselection Idle)
[
τMEC
21

]
, (IdleRadioLinkFailure Deregistered)[

τMEC
22

]
, (IdleDevicePowerOff Deregistered)

[
τMEC
23

]}
;

sMEC
0 = {Deregistered} .

We use weak bisimulation to formally verify the suggested models.

Proposition 1. The systems DApp and DN are weakly bisimilar.

Proof. As to definition of weak bisimulation, provided in [12], it is necessary
to identify a bisimilar relation between the states of both LTSs and to identify
respective matching between transitions.

Let the relation UMECApp be defined as UMECApp = {(Deregistered,
AppDeregistered) , (Connected,AppActive) , (Idle, AppIdle)}, then:

1. In case of attachment, for Deregistered∃{
τMEC
1 , τMEC

2

}
that leads to

Connected, and for AppDeregistered∃{
τA
1

}
that leads to AppActive.



Web Services for Radio Resource Control 197

2. In case of detach, or attach reject, or TAU reject, or radio link failure, or
device power off, for Connected∃{

τMEC
11 ∨ τMEC

12 ∨ τMEC
13 ∨ τMEC

14 ∨ τMEC
15

}
that leads to Deregistered, and for AppActive∃{

τA
6 ∨ τA

7 ∨ τA
8

}
that leads

to AppDeregistered.
3. In case of device initiated bearer establishment/modification/release, for

Connected∃{
τMEC
3 , τMEC

4 , τMEC
5

}
that leads to Connected, and for the

state AppActive∃{
τA
5

}
that leads to AppActive.

4. In case of Application initiated establishment/modification/release, for state
Connected∃{

τMEC
6 , τMEC

7 , τMEC
8 , τMEC

9

}
that leads to Connected, and for

AppActive∃{
τA
2 , τA

3 , τA
4

}
that leads to AppActive.

5. In case of handover, for Connected∃{
τMEC
10

}
that leads to Connected, and

for AppActive∃{
τA
5

}
that leads to AppActive.

6. In case of device inactivity detection or TAU accept or Application initiated
disconnect, for Connected∃{

τMEC
15 ∨ τMEC

16 ∨ τMEC
17

}
that leads to Idle, and

for AppConnected∃{
τA
9 ∨ τA

10 ∨ τA
11

}
that leads to AppIdle.

7. In case of device initiated new traffic, or TAU request, or Application initiated
bearer establishment, for Idle∃{

τMEC
21 , τMEC

18 ∨ τMEC
19 ∨ τMEC

20

}
that leads

to Connected, and for AppIdle∃{
τA
12 ∨ τA

13 ∨ τA
14

}
to AppIdle.

8. In case of device power off or radio link failure, for Idle∃{
τMEC
22 ∨ τMEC

23

}
leads to Deregistered, and for AppIdle∃{

τA
15 ∨ τA

16

}
to AppDeregistered.

Therefore DApp and DN are weakly bisimilar. ��

4 Conclusion

In this paper we propose an approach to design APIs of Web Services for MEC.
The approach is based on the RNIS provided by the MEC server. Two Web Ser-
vices are proposed: Device Context Web Service and Device Bearers Web Service.
The Device Context Web Service provides applications with information about
device connectivity, mobility and data transfer activity. The Device Bearers Web
Service provides applications with information about device’s active bearer and
allows dynamic control on QoS available on device’s data sessions. Web Ser-
vice data structures, interfaces and interface operations are defined. Some issues
related to MEC service APIs deployment are presented. The MEC server func-
tionality includes transition between Web Service operations and network events
(signaled by respective protocol messages) and maintenance of device state mod-
els which has to be synchronized with the Application view on the device state.
A method for formal model verification is proposed.

Following the same approach, other Web Services that use radio network
information may be designed. Examples include access to appropriate up-to-date
radio network information regarding radio network conditions that may be used
by applications which minimize round trip time and maximize throughput for
optimum quality of experience, access to measurement and statistics information
related to the user plane regarding video management applications, etc.

Acknowledgments. The research is in the frame of project DH07/10-2016, funded
by National Science Fund, Ministry of Education and Science, Bulgaria.



198 E. Pencheva and I. Atanasov

References

1. Nunna, S., Ganesan, K.: Mobile Edge Computing. In: Thuemmler, C., Bai, C. (eds.)
Health 4.0: How Virtualization and Big Data are Revolutionizing Healthcare, pp.
187–203. Springer, Cham (2017). doi:10.1007/978-3-319-47617-9 9

2. Gupta, L., Jain, R., Chan, H.A.: Mobile edge computing - an important ingredient
of 5G networks. In: IEEE Softwarization Newsletter (2016)

3. Chen, Y., Ruckenbusch, L.: Mobile edge computing: brings the value back to net-
works. In: IEEE Software Defined Networks Newsletter (2016)

4. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: a survey
and analysis of security threats and challenges. J. CoRR, abs/1602.00484 (2016)

5. Beck, M.T., Feld, S., Linnhhoff-Popien, C., Pützschler, U.: Mobile edge computing.
Informatik-Spektrum 39(2), 108–114 (2016)

6. Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 10th IEEE Interna-
tional Conference on Intelligent Systems and Control (ISCO 2016), pp. 1–8 (2016)

7. Brown, G.: Mobile edge computing use cases and deployment options. In: Juniper
White Paper, pp. 1–10 (2016)

8. ETSI GS MEC 003, Mobile Edge Computing (MEC); Framework and Reference
Architecture, v1.1.1 (2016)

9. Sarria, D., Park, D., Jo, M.: Recovery for overloaded mobile edge computing.
Future Generation Computer Systems, vol. 70, pp. 138–147. Elsevier (2017)

10. Beck, M., Werner, M., Feld, S., Schimper, T.: Mobile edge computing: a taxon-
omy. In: Sixth International Conference on Advances in Future Internet, pp. 48–54
(2014)

11. 3GPP. TS 36.300 Evolved Universal Terrestrial Radio Access (EUTRA) and
Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall descrip-
tion; Stage 2, Release 14, v14.0.0 (2016)

12. Fuchun, L., Qiansheng, Z., Xuesong, C.: Bisimilarity control of decentralized nonde-
terministic discrete-event systems. In: International Control Conference, pp. 3898–
3903 (2014)

http://dx.doi.org/10.1007/978-3-319-47617-9_9

	Web Services for Radio Resource Control
	1 Introduction
	2 Detailed Service Description
	2.1 Device Context Web Service
	2.2 Device Bearer Web Service

	3 Implementation Issues
	3.1 Device State Models
	3.2 Formal Verification of Device State Models

	4 Conclusion
	References




