Orchestration for the Deployment of Distributed
Applications with Geographical Constraints
in Cloud Federation

Massimo Villari®?, Giuseppe Tricomi, Antonio Celesti, and Maria Fazio

Department of Engineering, University of Messina, Messina, Italy
{mvillari,gtricomi,acelesti,mfazio}@unime.it

Abstract. This paper presents a system developed in the Horizon 2020
BEACON project enabling the deployment of distributed applications in
an OpenStack-based federated Cloud networking environment. In such
a scenario, we assume that a distributed application consists of sev-
eral microservices that can be instantiated in different federated Cloud
providers and that users can formalize advanced geolocation deployment
constrains. In particular, we focus on an Orchestration Broker that is
able to create ad-hoc manifest documents including application deploy-
ment instructions for the involved federated Cloud providers and users’
requirements.

1 Introduction

Nowadays, federated Cloud networking [1] represents an interesting scenario for
the deployment of distributed applications. In this paper, we describe the results
obtained by the Horizon 2020 BEACON Project in terms of Cloud brokering for
the deployment of distributed applications in federated OpenStack-based Cloud
networking environments [2]. In such a scenario, we assume that a distributed
application consists of several microservices that can be instantiated in differ-
ent federated Cloud providers and that users can specify advanced geolocation
deployment constrains. In particular, we present an Orchestration Broker that is
able to create ad-hoc service manifest documents including application deploy-
ment instructions destined to selected federated Cloud providers and users’
requirements. The Orchestration Broker interacts through RESTFUL communi-
cations with federated OpenStack Clouds through their own HEAT orchestration
systems.

The purposes of this paper is not to define a new standard for addressing
application deployment but to extend the Heat Orchestrator Template (HOT) [3]
resource set in order to manage the federated deployment of distributed applica-
tions. The Orchestration Broker analyses the HOT service manifest of an applica-
tion and automatically extracts the elements able to describe how microservices
have to be deployed in federated OpenStack Clouds via their HEAT systems.
An important feature of this approach is that the Orchestrator Broker is able
to select target federated Clouds according to their geographic location. In fact,
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

A. Longo et al. (Eds.): IISSC 2017/CN4IoT 2017, LNICST 189, pp. 177-187, 2018.
https://doi.org/10.1007/978-3-319-67636-4_19

178 M. Villari et al.

a “borrower” i.e., a Cloud federation client, can exactly specify the application
requirements along with the geographical locations where the microservices of a
distributed application have to be deployed.

The rest of the paper is organized as follows: Sect. 2 describes related works.
Section 3 presents the Orchestrator Broker design. Section4 describes imple-
mentation highlights. Section 5 concludes the paper also providing lights to the
future.

2 Related Work and Background

Cloud federation raises many challenges in different research fields as described
in [4-7]. Most of scientific works focus on architectural models able to efficiently
support the collaboration between different Cloud providers according to dif-
ferent points of view. The recent trend has been to use Cloud federation for
new challenging scenarios including Internet of Things (IoT) [6], Fog, Edge,
and Osmotic Computing [8]. In [9] it is proposed a mathematical algorithm
to improve the automatic scaling capabilities of a Cloud provider, based on a
brokering approach. The adopted approach focuses on the selection of Cloud
providers in order to create a federation able to maximize profits. In [10], it is
proposed a selection algorithm that allows federated Cloud providers to deter-
mine and choose the best destination where to migrate their VMs according
to green computing policies. A parametric decisioning algorithms for the dis-
tribution of the computational workload in a federated Cloud environment was
presented in [11]. An architecture for the setup of a Platform as a Service (PaaS)
for the deployment of distributed application was described in [12]. The afore-
mentioned initiatives focus on algorithms and architectures for the distribution
of the computational workload of application s among different Cloud providers,
but they lack of a concrete deployment orchestration mechanism able to consider
geographical constrains.

3 Architectural Design

The federation management system requires to manage several OpenStack
Clouds that cooperate each other according to specific federation agreements. In
order to achieve such a goal, we designed a federation management component
named OpenStack Federation Flow Manager (OSFFM) that acts as Orchestra-
tor Broker. It is responsible to interact with OpenStack Clouds under specific
assumptions and to lead the deployment and management of distributed appli-
cations. The OSFFM was designed according to the following assumptions:

— The system is composed by twin Clouds; this means that Virtual Machine
(VM) images, networks, users, key pair, security groups and other configura-
tions are the same in each Clouds.

— Each OpenStack Cloud interacts with a component called Federation Agent
able to set up OVN tunnel between with other Clouds.

Orchestration for the Deployment of Distributed Applications 179

Y
o
—N <
{ =
=
g o : ©
] =~ Federation Management . =
— =7 2 S
(=}
N = 8 % a l/
1 g 2 —————— '%)":;) -% T U
\ =2 < S A w
I O © - 552 a
| e | _---- B88¢ £
4 _J- 239 9
7 ges| | B 0
Borrower: ~o oS 2 o
FederationTenant

~ < | Openstack Main I
Component: Keystone,
Neutron,Nova \

Neutron,Nova

[Horizon DashBoard
[Horizon DashBoard
/ 7/
- X . X Q @)
Q a Tenant: Common R o K
A\ OpenStack Tenant 7 N g

A

Fig. 1. Overall high-level federation architecture.

Figure 1 shows the logical high-level Cloud federation architecture.

We can identify two types of actors: tenant of a Cloud involved in federa-
tion, borrower of a federation. The tenant is a subject (a person or a society)
who/which uses the resource and services provided by a Cloud in order to pro-
vide, in turn, services to his/her/its clients. Instead, the borrower is considered
as a tenant of the Cloud federation having an agreement with a particular Cloud
for accessing federated services.

The federation management is implemented by means of the OSFFM com-
ponent that represents the core of the Orchestrator Broker. It includes several
Application Program Interfaces (APIs) for the interaction among borrowers, ten-
ants and users of the Clouds involved in the federation. It carries out a federation
coordinator task managing virtual machines and virtual networks. All produced
big data for management and federation status are stored in a NoSQL data-
base. Each OpenStack Cloud involved in the federation is supported by a VM
running a software component named Federation Agent, that is responsible to
create virtual networks and virtual paths among them. In order to achieve such
a goal, each OpenStack Cloud was equipped with a OSFFM component whose
architecture is shown in Fig. 2.

The OSFFM is connected with the other actors by means of the following
interfaces:

180 M. Villari et al.

OSFFM - OS Adapter

=

OpenStack Clouds

Fig. 2. OSFFM system architecture.

— Southbridge. It is used to send instructions to federated OpenStack Clouds.
It includes two different adapters: jClouds and Software Defined Networking
(SDN). The first one interacts with the OpenStack common module of each
involved Cloud in order to retrieve information useful for the federation estab-
lishment process. Instead, the second one is used to provide information to
the Federation Agent responsible to setup the federated network in which
applications will be deployed.

— Eastbridge. It is used to send and receive instructions for the network man-
agement of the federated element involved in the application deployed. This
interface acts both as REST server and client.

— Northbridge. It is used to receive application deployment instructions
included in the service manifest.

— Westbridge. It is used to store status and management data, inside a NoSql
database. In our example, it is represented by a MongoDB connector class.

The manager component includes three sub-modules that are OSFF Orchestra-
tor (OSFFM_ORC), Monitoring (OSFFM_MON) and Elasticity Location Aware
(OSFFM_ELA). All actions are performed by such sub-modules through the
jClouds adapter that interacts with OpenStack Clouds.

OSFFM_ORC. This module is responsible to orchestrate all the tasks required
for deploying a distributed application. In particular it receives as an input

Orchestration for the Deployment of Distributed Applications 181

the HOT service manifest including guidelines for the deployment of a distrib-
uted application and builds several HOT microservice manifests that are sent to
the heat modules of specific OpenStack Clouds for the instantiation of virtual
resources in which microservices are deployed in. In order to do this it:

— pre-processes the pieces of information coming from others components and
stores them in MongoDB,

— post-processes the pieces of information retrieved from MongoDB,

— creates connections between NorthBridge and SouthBridge interfaces in order
to expose federated Clouds’ data through a single point of inquiry;

— coordinates of the activity of the other OSFFM modules.

The OSFFM_ORC sub-module uses hash tables in order to store the result of
its “manifest parsing” sub-elaboration activities; these activities are focused on
retrieving pieces of federated deployment information and pieces information
required to apply elasticity policies on the VM instantiated for the distributed
application deployment. After such parsing activities of the HOT service mani-
fest, OSFFM_ORC builds several HOT microservice manifests that are provided
to specific federated Clouds. Figure 3 shows an example of HOT microservice
manifest. The HOT standard has been extended in order to add new parame-
ters that specify deployment requirements defined as resources. In this way, it
is possible to compose a complex HOT service manifest by defining resources of

heat_template_version: '2014-10-16' resources:
B:
description: Microservice able to instantiate type: OS::Nova::Server
a cirros VM with a fixed IP address properties:
key_name: {get_param: key_name}
parameters: flavor: m1.tiny
key_name: { image: {get_param: cirros}
default: serviceKeypair, name: test
description: Name of keypair to networks:
assign to servers, - fixed_ip: 10.0.0.61
type: string network: {get_param: private_network}
}
private_network: { outputs:
default: private, out_B_private_ip:
description: Network to attach description: IP address of B server in
instance to., private network
label: Private network name or ID, value:
type: string} get_attr: [B, first_address]
cirros: {
default: cirros,
description: description,
type: string}

Fig. 3. Example of HOT microservice manifest.

182 M. Villari et al.

other resources that can be queried by means of a simple “get_resource” function
call. In particular, the following deployment requirements have been added: ()
service placement policies according to location constraints; (ii) location-aware
elasticity rules; (77) network reachability rules. The main methods involved for
the HOT service manifest instantiation process are:

— ManifestInstantiation. This method is used to create an instance of a Mani-
festManager thread starting from an existing HOT service manifest. All Man-
ifestManager threads are stored inside a hash map indexed through a service
Manifest Unique IDentifier (UID).

— ManagementGeoPolygon & ManagementRetrieve Credential. These methods
are used to retrieve from MongoDB, the credentials that borrowers hold in
the Cloud datacenters placed particular geographical locations. These actions
are complex because the credentials stored in the data model are stratified
and are associate to a three-dimensional matrix whose dimension represents:
Geographical Areas, Datacenters in Geographical Areas and Credentials valid
in Datacenters. More specifically the first two levels of this structure are
retrieved from the managementGeoPolygon method.

— DeployManifest & SendShutSignalStack4DeployAction. These methods are
used to deploy a stack, i.e., a group of resources, in several federated Clouds
belonging to a particular service group. The instantiated resources are all
twins among them for fault-tolerance purposes. In fact, after the instantia-
tion of VMs only a few of them are maintained in an active status, whereas
the others ones are shut down.

OSFFM_ELA. This module is designed to control and maintain the perfor-
mance of applications deployed in the federation. This goal is achieved by pro-
viding functions that allow to horizontally scale of resources in the federation.
This module interacts with the target Cloud when a particular condition occurs
in order to trigger a specific action. By interfacing this component with the
monitoring one, it is possible to have the parameters needed to verify both
the Cloud infrastructure and VMs internal states. When the previous informa-
tion is correlated with other Clouds information, the module becomes able to
make the required scalability decisions. The OSFFM_ELA interacts directly with
OSFFM_ORC to accomplish the decision made and interacts with OSFFM_MON
to receive status notifications about monitored condition.

OSFFM_MON. This module is designed as a collector of various monitoring
flows coming from several monitoring components inside the federated clouds.
The OSFFM_MON is interconnected with clouds via the SouthBridge interfaces
and makes request in order to discover information needed to monitor resources

Orchestration for the Deployment of Distributed Applications 183

state instantiated via the stacks. For OSFFM architecture, the monitoring solu-
tion is achieved by adapting the monitoring module used in OpenStack, that
is the Ceilometer component, at a federation level and interconnected with the
federated Ceilometer creating a hierarchical level structure.

4 OSFFM Orchestration Implementation

1 public void manifestinstatiation(String manName, String tenant) {

2 JSONObject manifest=null;

3 this.addManifestToWorkf (manName, manifest);

4 ManifestManager mm= (ManifestManager)OrchestrationManager .mapManifestThr.get (manName) ;
5 this.manageYAMLcreation (mm, manName, tenant) ;

Listing 1. Function manifestinstatiation

The OSFFM was developed in JAVA, and exposes REST-API interfaces in order
to avoid platform constraint during its usage. According to HEAT-API, also
service manifest used in our solution are based on YAML, this makes OSFFM
able to manipulate the manifest disrupting, and manifest composing, without
problems.

1 public HashMap<String,ArrayList<ArrayList<String>>> managementgeoPolygon (
2 String manName, MDBInt.DBMongo db,String tenant)
3 {
4 HashMap<String, ArrayList<ArrayList<String>>> tmp=new
5 HashMap<String, ArrayList<ArrayList<String>>>();
6 ManifestManager mm=(ManifestManager)OrchestrationManager.mapManifestThr.get (manName) ;
7 Set s=mm.table_resourceset.get ("0S::Beacon: :ServiceGroupManagement") .keySet () ;
8 Iterator it=s.iterator();
9 boolean foundone =false;
10 while (it.hasNext ()) {
11 String serName=(String)it.next();
12 SerGrManager sgm=(SerGrManager)mm.serGr_table.get (serName) ;
13 ArrayList<MultiPolygon> ar=null;
14 try{
15 ar=(ArrayList<MultiPolygon>)mm.geo_man.retrievegeoref (
16 sgm.getGeoreference()) ;
17 }catch (NotFoundGeoRefException ngrf) {...}
18 ArrayList dcInfoes=new ArrayList();
19 for (int index=0;index<ar.size();index++) {
20 try{
21 ArrayList<String> dcInfo=
22 db.getDatacenters (tenant, ar.get (index) . toJSONString()) ;
23 if (dcInfo.size() !=0){
24 dcInfoes.add(dcInfo) ;
25 foundone=true;
26 }
27 }
28 catch(org.json.JSONException je){...}
29 }
30 tmp.put (serName, dcInfoes);
31 if (! foundone) return null;
32 }
33 return tmp;
34 }

Listing 2. Implementation of the managementGeoPolygon method.

184 M. Villari et al.

1 public ArrayList<ArrayList<HashMap<String, ArrayList<Port>>>> deployManifest (
2 String template,

3 String stack,

4 HashMap<String, ArraylList<ArrayList<OpenstackInfoContainer>>> tmpMapcred,
5 HashMap<String, ArraylList<ArrayList<String>>> tmpMap,

6 DBMongo m) {

7 String stackName = stack.substring(stack.lastIndexOf("_") + 1 > 0 ?

8 stack.lastIndexOf("_") + 1 : 0, stack.lastIndexOf(".yaml") >= 0 ?

9 stack.lastIndexOf (".yaml") : stack.length());

10 ArrayList arDC=(ArrayList<ArrayList<String>>)tmpMap.get (stackName) ;

11 ArraylList arCr=(ArrayList<ArrayList<OpenstackInfoContainer>>)

12 tmpMapcred.get (stackName) ;

13 ArraylList<ArrayList<HashMap<String, ArrayList<Port>>>> arMapRes =

14 new ArrayList<>();

15 boolean skip = false, first = true;

16 int arindex = 0;

17 while (!skip){

18 ArrayList tmpArDC = (ArrayList<String>) arDC.get (arindex) ;

19 ArrayList tmpArCr = (ArrayList<OpenstackInfoContainer>) arCr.get (arindex) ;
20 ArrayList<HashMap<String, ArrayList<Port>>> arRes = new

21 ArrayList<HashMap<String, ArrayList<Port>>>();

22 for (Object tmpArCrob : tmpArCr) {

23 boolean result = this.stackInstantiate(template, (OpenstackInfoContainer)
24 tmpArCrob, m, stackName) ;

25 String region = "RegionOne";

26 ((OpenstackInfoContainer) tmpArCrob).setRegion(region);

27 HashMap<String, ArrayList<Port>> map_res_port =

28 this.sendShutSignalStack4DeployAction (stackName,

29 (OpenstackInfoContainer) tmpArCrob, first, m);
30 if (result){
31 first = false;
32 arRes.add (map_res_port) ;
33 }
34 arindex++;
35 arMapRes.add (arRes) ;
36 if (arindex > tmpArCr.size()) skip = true;
37 }
38 return arMapRes;
39 }
40 }

Listing 3. Implementation of the deployManifest method.

In our implementation we considered the OpenStack Mitaka release along with
the OVN integration for Neutron. In the following, we provide a few implemen-
tation highlights regarding the main previously described OSFFM_ORC meth-
ods. The manifestInstantiation method is defined in the OrchestrationManager
class and it is the manifest analysis workflow entry point. It allows to create a
new object of ManifestManager moved inside a support HashMap used to bind
Manifest with its ManifestManager thread. The manifest instantiation code is
shown in Listing 1. After this Manifest splitting process, the ManifestManager
starts the reconstruction in order to create the temporary template following the
service groups directives written inside the service manifest. The management-
GeoPolygon method is used to create a Hash Map storing three-dimensional
parameters for each service group that has been found in the service manifest.
Its implementation is shown in Listing2. The managementRetrieveCredential
method retrieves from MongoDB the access credentials related to the borrower
that are valid in the Cloud selected by the previous function. Listings3 and
4 respectively show the java code of the deployManifest and sendShutSignal-

Orchestration for the Deployment of Distributed Applications 185

StackDeployAction methods that are strictly linked. The first one prepares all
information needed by the second one, the real executor of the deployment task.
These methods are used to deploy a stack in the federation according to the
service replication purposes. The performed actions are used for the resources
instantiation on all Clouds selected in the service manifest for a particular service

group.

1 public HashMap<String, ArrayList<Port>> sendShutSignalStack4DeployAction (

2 String stackName, OpenstackInfoContainer credential,boolean first, DBMongo m) {

3 try {

4 Registry myRegistry = LocateRegistry.getRegistry (ip,port);

5 RMIServerInterface impl = (RMIServerInterface) myRegistry.lookup ("myMessage");

6 ArrayList resources =impl.getListResource (credential.getEndpoint(),

7 credential.getUser(),credential.getTenant (),credential.getPassword(), stackName) ;

8 boolean continua=true;

9 NovaTest nova = new NovaTest (credential.getEndpoint (), credential.getTenant(),
10 credential.getUser (), credential.getPassword(), credential.getRegion());
11 NeutronTest neutron = new NeutronTest (credential.getEndpoint (),

12 credential.getTenant (), credential.getUser(), credential.getPassword(),
13 credential.getRegion());

14 HashMap<String, ArrayList<Port>> mapResNet = new HashMap<String, ArrayList<Port>>();
15 Iterator it_res = resources.iterator();

16 while (it_res.hasNext()) {

17 String id_res = (String) it_res.next();

18 if (!first){

19 nova.stopVm(id_res) ;

20 m.updateStateRunTimeInfo (credential.getTenant (), id_res, first);
21 }

22 ArrayList<Port> arPort = neutron.getPortFromDeviceId(id_res);

23 mapResNet.put (id_res, arPort);

24 Iterator it_po = arPort.iterator();

25 while (it_po.hasNext()) {

26 m.insertPortInfo (credential.getTenant (),

27 neutron.portToString ((Port)it_po.next()));

28 }

29 }

30 return mapResNet;

31 }eatch (Exception e){

32 N

33 return null;

34 }

35 }

Listing 4. Implementation of the sendshutsignalstacksdeployaction method.

4.1 The New HOT Manifest

1 federation:

2 type: O0S::Beacon::ServiceGroupManagement
3 properties:

4 name: GroupName

5 geo_deploy: { get_resource: geoshape_1}
6 resource:

7 groups: {get_resource: A}

Listing 5. New Model of resource OS::Beacon::ServiceGroupManagement

The HOT service manifest is typically provided by the borrower and it is an
advanced version of HOT, because it is enriched with a set of new resource types
that are extracted by the Orchestrator Broker and processed separately. These
resources extend the HOT capabilities and are used by the OSFFM to compose

186 M. Villari et al.

a series of HOT microservice manifests. In addition, it is possible to use the HOT
syntax in order to formalize the requirements for the deployment of a borrowers’
distributed application. As previously discussed, such requirements include: ()
Service placement policies according to location constraints; (i) Location-aware
elasticity rules; (i4) Network reachability rules. In order to address the aforemen-
tioned requirements, in the context of the BEACON H2020 project we added
to the HOT-based service manifest the following new definition of resources:
OS::Beacon::ServiceGroupManagement and OS::Beacon::Georeferenced_deploy.
OS::Beacon::Service GroupManagement is related requirements (i) and (i7). This
resource type allows to specify the geographical information for the deployment
of a specific group by means of the geo_deploy field. Listing 5 shows an example
of such a resource. Instead, “OS::Beacon::Georeferenced_deploy” allows to define
an array of polygon (defined in GeoJSON format as MultiPolygon) that identi-
fies the areas where a resource could be allocated. Listing 6 shows an example
of such a resource.

1 geoshape_1:

2 type: OS::Beacon::Georeferenced_deploy

3 properties:

4 label: Shape label

5 description: descripition

6 shapes: [{"type":"Feature", "id":"BEL", "properties":{"name":"Belgium"},

7 "geometry":{"type":"Polygon", "coordinates":[[[3.314971,51.345781],

8 [4.047071,51.267259], [4.973991,51.475024], [5.606976,51.037298], [6.156658,50.803721],
9 [6.043073,50.128052], [5.782417,50.090328], [5.674052,49.529484], [4.799222,49.985373],
0 [4.286023,49.907497], [3.588184,50.378992], [3.123252,50.780363], [2.658422,50.796848],
1 [2.513573,51.148506], [3.314971,51.345781]]]}}]

Listing 6. New Model of resource OS::Beacon::Georeferenced_deploy

5 Conclusion and Future Work

In this paper, we proposed an approach for the orchestration deployment of dis-
tributed applications in federation Cloud environments. In particular, an Orches-
tration Broker is presented. It is able to process a HOT service manifest and to
produce different corresponding microservice manifests destined to different fed-
erated OpenStack-based Clouds providers. An important feature of this approach
is the ability to select target federated Clouds as function of their geographical
position. In fact, a borrower can select exactly the geographical area where a
distributed application has to be deployed. In future works, we will focus on
the enhancement of the maintenance tasks performed by the OSFFM_ELA and
OSFFM_MON modules on the virtual resources in which a distributed applica-
tion is deployed.

Acknowledgment. This work was supported by the European Union Horizon 2020
BEACON project under grant agreement number 644048.

Orchestration for the Deployment of Distributed Applications 187

References

10.

11.

12.

Moreno-Vozmediano, R., et al.: BEACON: a cloud network federation framework.
In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS, vol. 567, pp.
325-337. Springer, Cham (2016). doi:10.1007/978-3-319-33313-7_25

Celesti, A., Levin, A., Massonet, P., Schour, L., Villari, M.: Federated networking
services in multiple OpenStack clouds. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 338-352. Springer, Cham (2016). doi:10.1007/
978-3-319-33313-7_26

Heat Orchestration Template (HOT) specification. http://docs.openstack.org/
developer /heat /template_guide/hot_spec.html

Vernik, G., Shulman-Peleg, A., Dippl, S., Formisano, C., Jaeger, M., Kolodner,
E., Villari, M.: Data on-boarding in federated storage clouds. In: 2013 IEEE Sixth
International Conference on Cloud Computing (CLOUD), pp. 244-251 (2013)
Azodolmolky, S., Wieder, P., Yahyapour, R.: Cloud computing networking: chal-
lenges and opportunities for innovations. IEEE Commun. Mag. 51, 54-62 (2013)
Celesti, A., Fazio, M., Villari, M.: Enabling secure XMPP communications in fed-
erated IoT clouds through XEP 0027 and SAML/SASL SSO. Sensors 17, 1-21
(2017)

Celesti, A., Celesti, F., Fazio, M., Bramanti, P., Villari, M.: Are next-generation
sequencing tools ready for the cloud? Trends Biotechnol. 35, 486-489 (2017)
Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3, 76-83 (2016)
Mashayekhy, L., Nejad, M.M., Grosu, D.: Cloud federations in the sky: formation
game and mechanism. IEEE Trans. Cloud Comput. 3, 14-27 (2015)

Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: An approach to
reduce carbon dioxide emissions through virtual machine migrations in a sustain-
able cloud federation. In: 2015 Sustainable Internet and ICT for Sustainability
(SustainIT), Institute of Electrical & Electronics Engineers (IEEE) (2015)
Panarello, A., Breitenbcher, U., Leymann, F., Puliafito, A., Zimmermann, M.:
Automating the deployment of multi-cloud application in federated cloud environ-
ments. In: Proceedings of the 10th EAI International Conference on Performance
Evaluation Methodologies and Tools (2017)

Celesti, A., Peditto, N., Verboso, F., Villari, M., Puliafito, A.: DRACO PaaS: a
distributed resilient adaptable cloud oriented platform. In: IEEE 27th International
Parallel and Distributed Processing Symposium (2013)

http://dx.doi.org/10.1007/978-3-319-33313-7_25
http://dx.doi.org/10.1007/978-3-319-33313-7_26
http://dx.doi.org/10.1007/978-3-319-33313-7_26
http://docs.openstack.org/developer/heat/template_guide/hot_spec.html
http://docs.openstack.org/developer/heat/template_guide/hot_spec.html

	Orchestration for the Deployment of Distributed Applications with Geographical Constraints in Cloud Federation
	1 Introduction
	2 Related Work and Background
	3 Architectural Design
	4 OSFFM Orchestration Implementation
	4.1 The New HOT Manifest

	5 Conclusion and Future Work
	References

