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Abstract. In a finite game the Stochastically Stable States (SSSs) of
adaptive play are contained in the set of minimizers of resistance trees.
Also, in potential games, the SSSs of the log-linear learning algorithm
are the minimizers of the potential function. The SSSs can be charac-
terized using the resistance trees of a Perturbed Markov Chain (PMC),
they are the roots of minimum resistance tree. Therefore, computing the
resistance of trees in PMC is important to analyze the SSSs of learn-
ing algorithms. A learning algorithm defines the Transition Probability
Function (TPF) of the induced PMC on the action space of the game.
Depending on the characteristics of the algorithm the TPF may become
composite and intricate. Resistance computation of intricate functions
is difficult and may even be infeasible. Moreover, there are no rules or
tools available to simplify the resistance computations. In this paper,
we propose novel rules that simplify the computation of resistance. We
first, give a generalized definition of resistance that allows us to overcome
the limitations of the existing definition. Then, using this new definition
we develop the rules that reduce the resistance computation of compos-
ite TPF into resistance computation of simple functions. We illustrate
their strength by efficiently computing the resistance in log-linear and
payoff-based learning algorithms. They provide an efficient tool for char-
acterizing SSSs of learning algorithms in finite games.

Keywords: Potential games · Learning algorithms · Log-linear learn-
ing · Perturbed Markov Chains · Resistance of transitions

1 Introduction

In a finite repeated game if players sometimes make mistakes in choosing an
optimal strategy and if all mistakes are possible and are time-independent then
a perturbed Markov process is induced on the action space of the game. As the
probability of mistakes goes to zero the stationary distribution of the process
concentrates on particular equilibria. These are known as stochastically stable
equilibria or Stochastically Stable States (SSS) of the game [1]. The SSSs corre-
spond to the roots of minimum resistance trees where the resistance of a transi-
tion in a tree can be seen as the cost of deviating from the optimal strategy [2].
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Therefore, the computation of resistance of transitions of a Perturbed Markov
Chain (PMC) is important.

The learning algorithm used by the player of the game defines the Transition
Probability Function (TPF) of the induced PMC. Depending on the character-
istics of the learning algorithm the TPF can be composite and intricate. The
resistance computation of intricate TPF is difficult and may even be infeasible
for some functions. Moreover, there are no rules and no tools available in the lit-
erature to simplify the computation of resistance. We focus on developing novel
rules to simplify the resistance computations of a general class of TPF.

As the perturbation slowly decreases the limiting stationary distribution of
a PMC exists and is unique [2]. The support of the stationary distribution is
the root of the minimum resistance tree. Exploring these results many learning
algorithms for games are analyzed in the literature. In the following, we discuss
a few such algorithms.

A log-linear learning algorithm is used for a potential game that models the
load balancing problem of a heterogeneous wireless network [3]. In this algo-
rithm, the log of TPF is linear functions of the payoffs of the players [3–5]. This
algorithm induces a PMC on the action space of the game. The convergence
of this algorithms is analyzed as follows. First, using the TPF in (5) [5] the
expression of resistance of transition is (6) [5] is obtained. We observe that the
derivation of this expression requires a careful insight into the TPF to reduce it
into a simplified form so that the resistance can be obtained. Otherwise, in case
the TPT cannot be reduced into a simple form then the resistance may not be
feasible to compute. Second, the resistance of a feasible path in a tree is obtained
using the structure of potential games. Finally, the SSSs of the game are char-
acterized by using the minimum resistance tree definition. A binary log-linear
learning algorithm is a reduced information algorithm, in which the log TPF is
a linear function of the two most recent payoffs [5]. This algorithm was used to
distributively balance the loads in heterogeneous networks using near-potential
games [6]. The computation resistance of transition is difficult in this case. The
convergence of this algorithm to the SSSs of a potential game is analyzed in a
similar way as in log-linear algorithm [5,6].

A payoff-based learning algorithm is obtained by combining log-linear algo-
rithm and binary log-linear algorithm [5]. Due to the combination of two algo-
rithms, the TPF is much involved. Therefore, the computation of resistance of
transition is much involved and difficult. The convergence of this algorithm is also
analyzed in a similar way as in log-linear algorithm. Adaptive play algorithm was
applied to an acyclic game to characterize its SSSs using the resistance trees [2].
A class of trial and error learning algorithms for any finite game are also ana-
lyzed using the resistance trees [7,8]. Due to the different modes of learning in
these algorithms, the TPF becomes complicated and the resistance computation
is difficult.

In the above literature survey, we see that the computation of resistance is
used for characterizing the SSSs of many learning algorithms in games. Therefore,
in this paper, we develop new rules that ease the computation of resistance of
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intricate TPF. To do this, we first give a generalized definition of resistance
for any positive function. The new definition overcomes the limitation of the
existing old definition of resistance. For example, the limit in the old definition
of resistance is not always feasible to evaluate for some functions, see Sect. 3. The
new definition allows us to define resistance for any positive function. Thereby,
allowing us to propose new rules for computing resistance. The proposed rules
reduce the resistance computation of composite TPF into resistance computation
of simple functions. These rules provide a powerful tool that can be used for
analyzing the convergence properties of learning algorithms in finite games.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
of resistance trees of PMC. In Sect. 3, we present new rules for resistance com-
putation and provide their proves. In Sect. 4, we illustrate the application of the
proposed rules. Conclusions are summarized in Sect. 5.

2 Overview of Resistance Trees

In this section, we first give a brief overview of resistance trees of a PMC. Then,
using resistance trees we illustrate the convergence of log-linear learning algo-
rithm in potential games. For more details see [2,5].

2.1 Resistance Trees of PMC

A perturbed Markov process is characterized by a set {P τ} of transition matrices
over a state space X indexed by a parameter τ . Wherein, τ ∈ (0, τh] is a para-
meter that controls the perturbation, τh is constant. Probabilities P 0

ab and P τ
ab

denote the transition probabilities from state a to b in the unperturbed and the
perturbed Markov chains, respectively. The definition of resistance of transitions
and the definition of a regular perturbed Markov process are below [2].

Definition 1 (Resistance of transition). A perturbed Markov process {P τ}
is a regular if it satisfies the following conditions [2]:

1. P τ is aperiodic and irreducible for all τ ∈ (0, τh],
2. limτ→0 P τ

ab = P 0
ab,

3. for a strictly positive TPF P τ
ab there exists a non-negative number Rab called

the resistance of transition such that 0 < limτ→0+ e
Rab

τ P τ
ab < ∞.

Note that if P 0
ab > 0 then Rab = 0.

A tree, T , rooted at a state a, is a set of |X| − 1 directed edges such that,
from every other state a′, there is a unique directed path in the tree to a. The
resistance of the directed edge a → b is denoted as Rab. The resistance of a rooted
tree, T , is the sum of the resistances on its edges R(T ) =

∑
a,b∈T Rab. Let T (a)

be defined as the set of trees rooted at the state a. The stochastic potential of
the state a is defined as γ(a) = minT∈T (a) R(T ). A minimum resistance tree is a
tree that has the minimum stochastic potential, that is, any tree T that satisfies
R(T ) = mina∈X γ(a).

The following theorem by [2, Lemma 1] gives the existence and uniqueness
of the stationary distribution of a PMC.
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Theorem 1. Let {P τ} be a regular perturbed Markov process, and for each τ > 0,
let μτ be the unique stationary distribution of P τ . Then limτ→0 μτ exists and the
limiting distribution μ0 is a stationary distribution of P 0. The stochastically stable
states are the roots of minimum resistance trees.

2.2 Convergence of Log-Linear Learning Algorithm Using
Resistance Trees [5]

Log-linear learning algorithm induces a regular perturbed Markov process over
the action space X of a n-player potential game [5]. Let a = (ai, a−i) denotes an
action profile of the players where ai denote the action of player i and a−i denotes
the actions of all the other players. Let Xi and X−i denote the action space of
player i and action space of other players, respectively. Let b = (a′

i, a−i) denotes
another action profile where player i changes its action. For a ∈ X, let φ(a)
and Ui(a) denote the potential function and utility of player i, respectively. In a
potential game, for all ai, a

′
i ∈ Xi and for all a−i ∈ X−i, we have φ(a) − φ(b) =

Ui(a) − Ui(b). Assuming that the player is selected with uniform probability
the transition probability function of log-linear learning algorithm is given as
below [5, (5)].

P τ
ab =

1
n

exp
(

Ui(a
′
i,a−i)
τ

)

∑
ai∈Xi

exp
(

Ui(ai,a−i)
τ

) (1)

The first step in the proof of convergence is to derive an expression of resis-
tance of transition. Let V (a−i) := maxai∈Xi

Ui (ai, a−i) and Bi (ai) denotes the
set of actions that have the maximum utility. Multiplying the numerator and

denominator of (1) by e
V (a−i)

τ , we obtain

P τ
ab =

1
n

exp
(

V (a−i)−Ui(a
′
i,a−i)

τ

)

∑
ai∈Xi

exp
(

V (a−i)−Ui(ai,a−i)
τ

) . (2)

After simplifying the above equation, we obtain

lim
τ→0+

P τ
ab

exp
(

V (a−i)−Ui(a′
i,a−i)

τ

) =
1

n |Bi (ai)|
. (3)

Since, the above limit is positive and finite the induced process is a regular
Markov process and the resistance according to Definition 1 is

Rab = V (a−i) − Ui(a′
i, a−i). (4)

Second step is to obtain the resistance of a path in the resistance trees. This
is obtained in Lemma [5, Lemma 3.2] that we present below.

Lemma 1. Let P =
{
a0 → a1 → . . . → am

}
and PR =

{
am → am−1 → . . .

→ a0
}

be feasible forward path and reverse path, respectively. If all the players
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in a n-player potential game with potential function φ : X → R, adhere to
log-linear learning algorithm then the difference of resistance of paths is

R (P) − R
(
PR

)
= φ

(
a0

)
− φ (am) . (5)

The final step is to prove that the stochastically stable states of the log-linear
algorithm are the potential function maximizers of the potential game. This is
accomplished by using Lemma 1 and minimum resistance tree definition. The
detailed proof of the following theorem can be found in Proposition [5, 3.1].

Theorem 2. If all the players of a potential game adhere to log-linear learning
algorithm then the stochastically stable states are the potential function maxi-
mizers.

3 Rules for Computing Resistance

The resistance in Definition 1 can be computed in case the transition function
can be factorized into a simple function and in case the limit can be evaluated
as shown in Sect. 2.2. However, transition functions can be composite and intri-
cate that cannot always be simplified. Moreover, the limit in Definition 1 cannot
always be feasible to evaluate. For example, when P τ

ab = τ , the limit cannot be
evaluated. To overcome these limitations of Definition 1 we first give a new gen-
eralized definition of resistance that allows us to develop easy rules to compute
the resistance of any positive function.

Let o (.) and ω (.) denote little “o” order and little “ω” order, respectively.

Definition 2 (Resistance of positive function). The resistance of a strictly
positive function f(τ) is Res(f) if there exists a strictly positive function g(τ)
such that g ∈ o

(
ek/τ

)
and g ∈ ω

(
e−k/τ

)
for any k > 0; and

lim
τ→0

f(τ)

g(τ)e− Res(f)
τ

= 1. (6)

Remark 1. Note that Definition 2 includes Definition 1, in which g(τ) = κ, 0 <
κ < ∞. Now, we can evaluate the resistance of P τ

ab = τ , i.e., Res(τ) = 0.

Remark 2. Note that (6) is equivalent to

f(τ) = g(τ)e− Res(f)
τ + h(τ), (7)

where h(τ) ∈ o
(
g(τ)e− Res(f)

τ

)
.

Remark 3. We call g(τ) as a sub-exponential function if g ∈ o
(
ek/τ

)
and g ∈ ω

(
e−k/τ

)
for any k > 0. Note that it is equivalent to |log g| ∈ o

(
1
τ

)
.
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Lemma 2. Consider any two sub-exponential functions g1(τ) and g2(τ). Con-
sider two real numbers R1 and R2. If R1 < R2 then

g2(τ)e−R2/τ ∈ o
(
g1(τ)e−R1/τ

)
. (8)

Proof. Let k be a real number. Then

lim
τ→0

g2(τ)e−R2/τ

g1(τ)e−R1/τ
= lim

τ→0

g2(τ)
e−(R2−k)/τ

[
g1(τ)

e−(R1−k)/τ

]−1

. (9)

The above limit goes to zero when we choose R1 < k < R2. This is because the
first factor goes to zero as R2 − k > 0. Also, the second factor goes to zero as
R1 − k < 0. Recall that it is because g1 and g2 are sub-exponential.

Lemma 3. If Res(f) exists then it is unique.

Proof. Assume that function f have two different resistances R1 and R2. Then,
there exist g1, g2, h1, h2 such that

f(τ) = g1(τ)e− R1
τ + h1(τ) = g2(τ)e− R2

τ + h2(τ), (10)

where h1(τ) ∈ o
(
g1(τ)e− R1

τ

)
and h2(τ) ∈ o

(
g2(τ)e− R2

τ

)
. Let R1 < R2. Using

Lemma 2, we have h2 ∈ o
(
g1(τ)e− R1

τ

)
. Rearranging terms in (10), we have

1 +
h1(τ)

g1(τ)e− R1
τ

=
g2(τ)e− R2

τ

g1(τ)e− R1
τ

+
h2(τ)

g1(τ)e− R1
τ

. (11)

Using Lemma 2 to evaluate the limit of the above equation as τ goes to zero, we
arrive at contradiction that 1 = 0.

The following proposition gives the rules for computing Res(f).

Proposition 1. Let f, f1 and f2 be strictly positive functions. Let κ be a positive
constant. If Res(f1) and Res(f2) exist then

I f1(τ) is sub-exponential if and only if Res(f1) = 0. In particular Res(κ) = 0,
II Res(e−κ/τ ) = κ,

III Res(f1 + f2) = min {Res(f1), Res(f2)},
IV Res(f1 − f2) = Res(f1), ifRes(f1) < Res(f2),
V Res(f1f2) = Res(f1) + Res(f2),

VI Res( 1
f ) = −Res(f),

VII If f1(τ) ≤ f2(τ), Res(f1) and Res(f2) exist then Res(f2) ≤ Res(f1),
VIII Let f1(τ) ≤ f(τ) ≤ f2(τ), If Res(f1) = Res(f2) then Res(f) exists and

Res(f) = Res(f1).

Remark 4. In Rule IV, if Res(f1) = Res(f2) then we cannot compute Res(f1−f2)
because in general the difference of sub-exponential functions may not be a sub-
exponential function. For example, choose f1(τ) = 1+ e−k/τ and f2(τ) = 1 with
k > 0 then Res(f1) = Res(f2) = 0 but Res(f1 − f2) = k.
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Remark 5. For Rule VIII, in general if f1(τ) ≤ f(τ) ≤ f2(τ) and Res(f1) �=
Res(f2) then Res(f) may not exist. For example, for f(τ) = λ(τ)f1+(1−λ(τ))f2,
λ(τ) = 1

2

(
cos

(
1
τ

)
+ 1

)
the Res(f) does not exist.

Proof. Proof of Rule I: Let f(τ) be a sub-exponential function. Choosing
g(τ) = f(τ) and substituting Res(f) = 0 in (6) we get limτ→0

f(τ)

f(τ)e− Res(f)
τ

= 1.

Therefore, we have Res(f) = 0.
Assume Res(f) = 0. From (7), we have f(τ) = g(τ) + h(τ), which is a sub-

exponential function.
Let f(τ) = κ and g(τ) = κ then g(τ) ∈ o

(
e

κ
τ

)
and g(τ) ∈ ω

(
e− κ

τ

)
, κ > 0.

Substituting these in (6) we have Res(κ) = 0.

Proof of Rule II: Substituting f(τ) = e−κ/τ and g(τ) = 1 in (6)we getRes(f) = κ.

Proof of Rule III: Let Res(f1) and Res(f2) be the resistances of functions f1

and f2, respectively. Then, from (7) we have f1(τ) = g1(τ)e− Res(f1)
τ + h1(τ),

f2(τ) = g2(τ)e− Res(f2)
τ + h2(τ), where h1(τ) ∈ o

(
g1(τ)e− Res(f1)

τ

)
, h2(τ) ∈

o
(
g2(τ)e− Res(f2)

τ

)
. The sum of two functions can be written as

f1(τ) + f2(τ) = g1(τ)e− Res(f1)
τ

(

1 +
h1(τ)

g1(τ)e− Res(f1)
τ

+
g2(τ)e− Res(f2)

τ

g1(τ)e− Res(f1)
τ

+
h2(τ)

g1(τ)e− Res(f1)
τ

)

,

(12)

Consider the case when Res(f1) < Res(f2). Using Lemma 2 we have
h2 ∈ o

(
g1(τ)e− Res(f1)

τ

)
. Therefore, f1(τ)+f2(τ) = g1(τ)e− Res(f1)

τ +h3(τ), where

h3(τ) ∈ o
(
g1(τ)e− Res(f1)

τ

)
. According to (7), we have Res(f1 + f2) = Res(f1).

The case of Res(f1) = Res(f2) leads to the same result as shown below.

f1(τ) + f2(τ) = e−Res(f1)
τ [g1(τ) + g2(τ)] + h1(τ) + h2(τ). (13)

Note that sum of sub-exponential functions g1(τ) + g2(τ) is a sub-exponential
function. Observe that h1(τ) + h2(τ) ∈ o

(
[g1(τ) + g2(τ)] e−Res(f1)

τ

)
. As in the

previous case, according to (7) we have Res(f1 + f2) = Res(f1)

Proof of Rule IV: Also, it can be shown similarly to the proof of rule III that if
Res(f1) < Res(f2) then Res(f1 − f2) = Res(f1).

Proof of Rule V:

lim
τ→0

f1(τ)

g1(τ)e− Res(f1)
τ

lim
τ→0

f2(τ)

g2(τ)e− Res(f2)
τ

= lim
τ→0

f1(τ)f2(τ)

g1(τ)g2(τ)e− Res(f1)+Res(f1)
τ

= 1. (14)

Therefore, Res(f1f2) = Res(f1) + Res(f2).
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Proof of Rule VI: Since Res(f) exists, inverting both sides of (6), we have

lim
τ→0

f(τ)

g(τ)e− Res(f)
τ

= 1 = lim
τ→0

1
f(τ)

1
g(τ)e

− −Res(f)
τ

. (15)

Note that 1
g(τ) is sub-exponential. Therefore, we have Res( 1

f ) = −Res(f).

Proof of Rule VII: Assume that Res(f1) < Res(f2). Using Lemma 2, we have
g2(τ)e−Res(f2)/τ ∈ o

(
g1(τ)e−Res(f1)/τ

)
and h2 ∈ o

(
g1(τ)e−Res(f1)/τ

)
.

f1 ≤ f2, (16)

g1(τ)e−Res(f1)/τ + h1(τ) ≤ g2(τ)e−Res(f2)/τ + h2(τ), (17)

1 +
h1(τ)

g1(τ)e−Res(f1)/τ
≤ g2(τ)e−Res(f2)/τ + h2(τ)

g1(τ)e−Res(f1)/τ
. (18)

As τ → 0, we arrive at a contradiction that 1 ≤ 0. Therefore, Res(f1) ≥ Res(f2).

Proof of Rule VIII: We have 1 ≤ f(τ)
f1(τ)

≤ f2(τ)
f1(τ)

and Res
(

f2(τ)
f1(τ)

)
= Res(f2) −

Res(f1) = 0. By Rule I f2(τ)
f1(τ)

is sub-exponential. This implies that f(τ)
f1(τ)

is also
sub-exponential. Therefore, there exists g01(τ) such that

1 = lim
τ→0

f(τ)
f1(τ)

g01(τ)
= lim

τ→0

f(τ)

g01(τ)g1(τ)e− Res(f1)
τ

lim
τ→0

g1(τ)e− Res(f1)
τ

f1(τ)
, (19)

= lim
τ→0

f(τ)

g01(τ)g1(τ)e− Res(f1)
τ

, (20)

where the product g01(τ)g1(τ) is also a sub-exponential function. Therefore,
Res(f) exists and Res(f) = Res(f1) = Res(f2).

4 Application of Proposed Rules

In this section, we illustrate the application and robustness of the proposed rules
for computing the resistance of composite TPFs.

4.1 Resistance of Log-Linear Learning Algorithm

By using Rule V and VI the resistance of Res (P τ
ab) (1) is obtained as below.

Res (P τ
ab) = Res

(
1
n

)

+ Res
(

e
Ui(a′

i,a−i)
τ

)

− Res

(
∑

ai∈Xi

e
Ui(ai,a−i)

τ

)

. (21)

Applying the Rule III to the above equation, we have

Res (P τ
ab) = Res

(
1
n

)

+ Res
(

e
Ui(a′

i,a−i)
τ

)

− min
ai∈Xi

Res
(

e
Ui(ai,a−i)

τ

)

. (22)

Applying the Rule I and II, we get

Res (P τ
ab) = −Ui(a′

i, a−i) − min
ai∈Xi

(−Ui(ai, a−i)) = V (a−i) − Ui(a′
i, a−i). (23)
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4.2 Resistance of Payoff-Based Learning Algorithm

In this subsection, we illustrate the application of the proposed rules by obtain-
ing the expression of resistance payoff-based algorithm as in [5, Claim 6.1].
Let denotes two states of PMC of this algorithm as z1 :=

[
a0, a1, x1

]
and

z2 :=
[
a1, a2, x2

]
, where a0, a1, a2 are action profiles and x1, x2 denotes the

vectors representing whether the players have experimented or not, x1
i = 0 and

x2
i = 1 represents that the player i had experimented. The transition proba-

bility function of Payoff-based algorithm is much involved as can be seen in
[5, Claim 6.1].

P τ
z1→z2 =

⎛

⎝
∏

i:x1
i=0,x2

i=0

(
1 − e− m

τ

)
⎞

⎠

⎛

⎝
∏

i:x1
i=0,x2

i=1

e− m
τ

|Xi|

⎞

⎠

⎛

⎝
∏

i:x1
i=1,a2

i=a0
i

e
Ui(a0)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠

⎛

⎝
∏

i:x1
i=1,a2

i=a1
i

e
Ui(a1)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠ (24)

Using the Rule V, we have

Res
(
P τ

z1→z2

)
=

∑

i:x1
i =0,x2

i =0

Res
(
1− e− m

τ

)
+

∑

i:x1
i =0,x2

i =1

Res

(
e− m

τ

|Xi|

)

∑

i:x1
i =1,a2

i =a0
i

Res

⎛

⎝ e
Ui(a0)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠+
∑

i:x1
i =1,a2

i =a1
i

Res

⎛

⎝ e
Ui(a1)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠ (25)

Applying the Rules III, IV, V, and VI, we have

Res (P τ
z1→z2) =

∑

i:x1
i=0,x2

i=0

min
{
Res (1) ,Res

(
e− m

τ

)}

+
∑

i:x1
i=0,x2

i=1

[

Res
(
e− m

τ

)
+ Res

(
1

|Xi|

)]

+
∑

i:x1
i=1,a2

i=a0
i

[

Res
(

e
Ui(a0)

τ

)

− Res
(

e
Ui(a0)

τ + e
Ui(a1)

τ

)]

+
∑

i:x1
i=1,a2

i=a1
i

[

Res
(

e
Ui(a1)

τ

)

− Res
(

e
Ui(a0)

τ + e
Ui(a1)

τ

)]

(26)
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Simplifying further by applying the Rules I and II, we get

Res (P τ
z1→z2) =

∑

i:x1
i=0,x2

i=0

min {0,m} +
∑

i:x1
i=0,x2

i=1

[m]

+
∑

i:x1
i=1,a2

i=a0
i

[
−Ui(a0) − min

{
−Ui(a0),−Ui(a1)

}]

+
∑

i:x1
i=1,a2

i=a1
i

[
−Ui(a1) − min

{
−Ui(a0),−Ui(a1)

}]
(27)

Let V (a0, a1) = max
{
Ui(a1), Ui(a2)

}
, then we have

Res (P τ
z1→z2) =

∑

i:x1
i=0,x2

i=1

m +
∑

i:x1
i=1,a2

i=a0
i

(
V (a0, a1) − Ui(a0)

)

+
∑

i:x1
i=1,a2

i=a1
i

(
V (a0, a1) − Ui(a1)

)
(28)

The above obtained expression of resistance is same as in [5, (13)], verifying it.

5 Conclusion

Novel rules are proposed for computing the resistance of transition of a perturbed
Markov chain. These rules reduce the computation of resistance of composite
and intricate transition probability function into the computation of resistance
of simple functions. These rules are simple and yet are powerful. The strength of
these rules is illustrated by using them to calculate efficiently the resistance of
transition of the well-known log-linear learning algorithm and the payoff-based
learning algorithm. These calculations are verified by comparing the obtained
expressions with that of in the literature. These rules provide an efficient tool that
can be used to characterize the stochastically stable states of learning algorithms
in finite games. We hope to apply these rules for analyzing new algorithms based
on perturbed Markov chains as well as new game settings like potential games
with noisy rewards [9].
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