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Abstract. We study a dynamic mechanism design problem for a net-
work of interdependent strategic agents with coupled dynamics. In con-
trast to the existing results for static settings, we present a dynamic
mechanism that is incentive compatible, individually rational, budget
balanced, and social welfare maximizing. We utilize the correlation
among agents’ states over time, and determine a set of inference sig-
nals for all agents that enable us to design a set of incentive payments
that internalize the effect of each agent on the overall network dynamic
status, and thus, align each agent’s objective with the social objective.

Keywords: Security games · Dynamic mechanism design · Epidemics
over networks

1 Introduction

Recently there has been a growing body of literature studying the dynamic
behavior of networked strategic agents, where each agent’s state and utility is
affected by his interactions with his neighbors in the network. This literature
is motivated by various applications that include opinion dynamics in social
networks, epidemics spreading in networks, dynamic adoption of new products
and technologies over networks, and network security. In this paper, we study a
model of dynamic networked agents motivated by a network security application.

We consider a dynamic network with strategic agents who privately observe
their own security state and are only interested in maximizing their own utility.
We formulate a mechanism design problem for a network manager whose objec-
tive is to dynamically allocate his limited security resources in the network so
as to maximize the overall security of the whole network over time.

We assume that an agent’s utility depends on his own private security state as
well as the externality he receives from his neighbors in the network. Moreover,
an agent’s security state dynamically evolves over time; its evolution depends
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on the security resources the agent receives from the network manager, as well
as direct external attacks launched from outside of the network and indirect
internal attacks launched from his unsafe local neighbors in the network. There-
fore, the network manager needs to design a dynamic incentive mechanism for
agents with correlated types and interdependent valuations so as to align their
selfish objectives with his own objective, which is the maximization of the overall
security of the whole network.

We propose a dynamic incentive mechanism that is individually rational and
budget balanced [3], and enables the network manager to achieve the socially
efficient outcome. Our result is in contrast with the existing impossibility results
for incentive mechanisms that are socially efficient, individually rational, incen-
tive compatible, and budget balanced in the static settings [22]. We exploit the
dynamic correlation among the agents’ security states and determine a set of
inference signals for all agents over time. Utilizing the proposed set of inference
signals, we characterize a dynamic incentive mechanism that ensures the agents’
incentive compatibility and individual rationality, achieves a socially efficient
outcome, and is ex-ante budget balanced.

There is a growing body of literature on network security games (see [18] and
references therein). One set of papers assume that network agents are cooper-
ative, and study the interactions between the network as a whole and an out-
side attacker as a two-player attacker-defender game [4,13,17]. Another set of
papers assume an exogenously-fixed attack behavior from outside the network,
and study the interactions between strategic agents within the network as a net-
work game problem (see [9,15] and references therein). For instance, the work of
[10] studies a network security game with strategic agents, and shows that the
equilibrium outcome of the game can be very poor compared to the social opti-
mum, and this gap tends to increase with the increase in network size and the
agents’ interdependence. In our work, we study the dynamic interactions among
agents within the network. However, we take the mechanism design approach
rather than analyzing the resulting security game for a given environment.

The existing literature on mechanism design for network security considers
mainly static incentive design problems. For instance, the work of [16] investi-
gates the role of cyber-insurance as an incentive instrument for agents to increase
their security investment in self-protection. The work of [22] studies the mech-
anism design problem for general networks with strategic agents in static set-
tings, and shows that there exists no incentive mechanism that can implement
the socially efficient outcome, while ensuring individual rationality, incentive
compatibility and (weak) budget balance. Our paper contributes to this set of
literature by showing that this impossibility result does not hold for dynamic
settings. The fact that the agents’ incentive problem improves in dynamic set-
tings has been previously shown by works that look at security games in repeated
settings (see [10,21]). Our work is different from those that consider repeated
game settings. First, we take a mechanism design approach rather than analyzing
a repeated game setting. Second, in repeated game settings there is no system
dynamics, and the existing results are based on the reputation that agents mutu-
ally form over time. Our work provides another insight for such improvements
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in dynamic settings by capitalizing on the coupling among the agents’ security
dynamics over time.

The model we consider in this paper is also related the literature on
Susceptible-Infected-Susceptible (SIS) epidemic models over networks with
strategic agents (see [23] and references therein). For instance, the works of [8,24]
study different variations of SIS epidemic models over networks with strategic
agents from a game-theoretical approach. The authors in [24], investigate a game
setting where agents make one-time investment decisions in their security which
then affect the epidemic process. The work of [8] studies a marketing problem on
networks using a SIS epidemic model, and investigates a game problem between
two firms which compete for market shares over the network.

The mechanism design problem we consider in this paper can also be viewed
as a dynamic resource allocation mechanism with strategic agents. The work
of [12] studies the resource allocation problem in networks with non-strategic
agents. The authors in [6,11] consider the resource allocation problem in sta-
tic networks with strategic agents, take an implementation theory approach,
and propose resource allocation mechanisms that are social welfare maximizing,
individually rational and budget balanced. In this paper, we consider a class of
dynamic resource allocation problems with strategic agents, and we present a
dynamic resource allocation mechanism that is social welfare maximizing, incen-
tive compatible, individually rational and ex-ante budget balanced.

The rest of the paper is organized as follows. We present our model in Sect. 2.
We formulate the dynamic incentive design problem and characterize its solution
in Sect. 3. We show that the dynamic incentive mechanism proposed in this paper
can implement the solution of the corresponding dynamic centralized optimal
resource allocation problem. In Sect. 4, we formulate such a centralized resource
allocation problem as a centralized stochastic control problem and provide its
solutions for a set of specific network topologies. The proofs of all the results
that appear in this paper can be found in [7].

2 Model

There are n strategic agents each one residing in a distinct node of an intercon-
nected network interacting over time t ∈ T := {0, 1, 2, . . .}. At each time t ∈ T ,
the security state of agent i is given by θi

t ∈ Θ := {0, 1}; the realization of θi
t

is agent i’s private information. Agent i’s state is safe if θi
t = 1 and is unsafe if

θi
t = 0. We refer to θi

t as agent i’s type at time t. There is a network manager
who takes security measures dynamically over time so as to defend the network
against external attacks and/or propagation of internal attacks. The security
state θi

t of agent i dynamically evolves over time; θi
t’s evolution depends on the

security state of his neighbors in the network, the network manager’s actions,
and the probability of external attacks.

System Dynamics. We represent the agents’ network by a directed graph
G = (N,L) where N = {1, ..., n} and L ∈ R

n×n
+ denote the set of agents and

the set of directed links between them, respectively. The state θi
t of agent i
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is affected by agent j if lji > 0. We define the set of agent i’s neighbors as
N i: = {j : lji > 0}. During each time t ∈ T , if agent i is in the safe state, i.e.
θi

t = 1, it may be attacked directly from outside with probability di, or indirectly
from any of his unsafe neighbors j ∈ N i with probability lji. The topology of the
network G and the probability of outside attacks di remains the same over time.

The goal of the network manager is to maximize the overall security of the
network over time, i.e. maximize the social welfare. At each time t, the manager
can choose one agent at ∈ N and apply a security measure to him. As a result
of applying the security measure to agent i, i.e. at = i, if agent i is in the unsafe
state he will switch to the safe state with probability h. The security measure
also protects the chosen agent against direct attacks from outside during time t
with the same probability h, but it does not affect the indirect spread of attacks
within the network.

Let θt = (θ1t , . . . , θn
t ) ∈ Θn denote the security state of the network at time

t. As a result of the network manger’s action at, new direct attacks from outside,
and the spread of indirect attacks within the network during time t, the network
state θt+1 has the following Markovian dynamics:

P{θt+1 = b|θt, at} =
n∏

i=1

P{θi
t+1 = bi|θt, at}, ∀b ∈ Θn, (1)

where,

P{θi
t+1=1|θt, at}=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, θi
t = 0, i �= at

h(1 − di(1 − h))
∏

j∈Ni:θj
t=0 (1 − lji), θi

t = 0, i = at

(1 − di)
∏

j∈Ni:θj
t=0 (1 − lji), θi

t = 1, i �= at

(1 − di(1 − h))
∏

j∈Ni:θj
t=0 (1 − lji), θi

t = 1, i = at

, (2)

and P{θi
t+1 = 0|θt, at} = 1 −P{θi

t+1 = 1|θt, at}. We note that by (1) and (2) we
assume that the outside attacks and attack spreads within network are indepen-
dent across different agents, and thus, conditioned on previous state θt and the
network manager’s action at, the agents’ security states evolve independently as
in (1). Equation (2) describes this evolution: (i) if agent i is in the unsafe state
and is not receiving any security measure from the network manager at t, he
remains in the unsafe state; (ii) if agent i is in the unsafe state and receives
the security measure from the network manager, he will restore his security if
the security measure is successful (prob. h), he is not the subject of new direct
attacks (prob. (1 − di(1 − h))), and he is not attacked by his unsafe neighbors
(prob.

∏
j∈Ni:θj

t=0 (1 − lji)); (iii) similarly, if agent i is in the safe state and is not
receiving a security measure, he will remain in the safe state if he is not attacked
from outside (prob. 1−di) and he is not attacked by his unsafe neighbors (prob.∏

j∈Ni:θj
t=0 (1 − lji)); (iv) if agent i is in the safe state and is receiving a secu-

rity measure from the network manager, he will remain in the safe state if he
is not attacked from outside (prob. 1 − di(1 − h)) and he is not attacked by his
neighbors that are in an unsafe state (prob.

∏
j∈Ni:θj

t=0 (1 − lji)).
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Agents’ Utilities. Each agent i ∈ N has a valuation for his security state θi
t as

well as the security state of his neighbors θj
t , j ∈ N i, and the security measures

he receives from the network manager; this valuation is given by,

vi(θt, at) = θi
t +

α

|N i|1{θi
t=1 or at=i}

∑

j∈Ni

θj
t , (3)

where 0 < α < 1 captures the value of a safe neighborhood to an agent i. As a
result of (3), agent i has a positive valuation for safe neighbors only if he is in
the safe state or he is receiving a security measure at t, i.e. {θi

t = 1 or at = i}.
Let pi

t denote the monetary payment made by agent i to the network manager
at t (pi

t ∈ R). Then the total utility of agent i at t is given by,

ui
t(θt, at, p

i
t) = vi(θt, at) − pi

t, (4)

Let δ ∈ (0, 1) denote the common discount factor. Then the total discounted
utility of agent i ∈ N , is

U i = (1 − δ)
∞∑

t=0

δtui
t(θt, at, p

i
t) = (1 − δ)

∞∑

t=0

δt(vi(θt, at) − pi
t) . (5)

The network manager’s objective is to maximize the social welfare W given by,

W = E{(1 − δ)
∞∑

t=0

δt
n∑

i=1

vi(θt, at)}. (6)

The network manager’s problem would be a standard control problem
(Markov decision problem) if the manager knew θt for all t. However, θt is not
known to the manager; θi

t, i ∈ N , is agent i’s private information. Thus, in order
to take a security measure at any time t, the manager has to elicit information
about each agent’s security status. Since all agents are selfish (strategic) and
want to maximize their own utility given by (5), they do not voluntarily reveal
their information to the manager. Therefore, the manager needs to design an
incentive mechanism so as to align the agents’ objectives with his own objective.
In this paper, we investigate such an incentive design problem, and formulate it
as a mechanism design problem in Sect. 3.

3 Dynamic Incentive Design Problem

We invoke the revelation principle for dynamic games [20], and, without loss
of generality, restrict attention to direct revelation mechanisms that are incen-
tive compatible. In a direct revelation mechanism, at every t ∈ T , the net-
work manager asks agents to report their current security state. Let ri

t denote
agent i’s report for time t, which is not necessarily the same as θi

t. Let
ht := {ri

s, i ∈ N, s ≤ t} denote the history of reports and Ht denote the set
of all possible histories at t. A direct mechanism is captured by a set of func-
tions (π(.), p(.)) = {πt(·), pi

t(·), i ∈ N, t ∈ T } that the network manager designs
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and commits to them, where πt : Ht → N determines which agent receives the
security measure at t, and pi

t : Ht → R, i ∈ N , determines the monetary pay-
ment (or the negative of the monetary incentive) that agent i makes (receives) at
time t based on the history up to t. A direct mechanism is incentive compatible
(IC) if at every t ∈ T every agent is willing to report truthfully his security state
given that the other agents report truthfully. That is, for every agent i ∈ N and
for all reporting strategies {σi

τ : Θ × Hτ → Δ(Θ), τ ≥ t}, truth telling results in
higher expected utility at every t ∈ T and ht ∈ Ht, i.e.

E{(1 − δ)
∑∞

τ=t δτ−t
[
vi(θτ , πτ (θ−i

τ , θi
τ )) − pi

τ (θ−i
τ , θi

τ )
]
} ≥

E{(1 − δ)
∑∞

τ=t δτ−t
[
vi(θτ , πτ (θ−i

τ , στ (θi
τ , hi

τ ))) − pi
τ (θ−i

τ , στ (θi
τ , hi

τ ))
]
},

(7)

where Δ(Θ) denotes the set of all probability distributions on Θ.
The network manager also needs to ensure that agents voluntarily participate

in the direct mechanism (π(.), p(.)). Let U i
0 ≥ 0 denote agent i’s expected utility

by opting out of the mechanism. Then, agents’ voluntary participation is ensured
by the following individual rationality (IR) constraints as follows,

E{(1 − δ)
∞∑

τ=0

δτ
[
vi

τ (θτ , πτ (θ−i
τ , θi

τ )) − pi
τ (θ−i

τ , θi
τ )

]
} ≥ U i

0,∀i ∈ N. (8)

Therefore, we can formulate the dynamic incentive design problem for the
network manager as follows:

max
π(·),p(·)

E{(1 − δ)
∞∑

t=0

δt
n∑

i=1

vi(θt, at)} (9)

subject to IC constraints (7) and IR constraints(8)

The incentive design problem formulated above is a dynamic mechanism
design problem with correlated types and interdependent valuations. It is a
dynamic mechanism design (in the strategic sense) since agents’ incentive con-
straints at any time t depend on their strategic decisions at other times. More-
over, since the evolution of security states, given by (2), are coupled among
agents, the agents’ types are correlated with each other and over time. Further-
more, each agent’s utility, given by (3), depends on his neighbor’s security states
in addition to his own security state, thus, agents have interdependent valuations.
As a result of the correlation among agents’ types and agents’ interdependent
valuations, the dynamic generalizations of the Vickrey–Clarke–Groves (VCG)
mechanism [2] and that of d’Aspremont and Gerard-Varet (AGV) mechanism
[1] cannot be used to solve the network manager’s problem (9).

In this paper, we present an alternative approach to the dynamic incen-
tive design problem by the network manager. We utilize the correlation among
agents’ security states over time to form a set of cross inference signals that
enable us to internalize the effect of each agent’s security state on the overall
network security through incentive payments. The idea of utilizing the correla-
tion among agents’ types to extract their private information was first exploited
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by Cremer and McLean in a static setting [5]. They formed a cross inference
signal for each agent by utilizing the correlation among the realization of agents’
types, determined appropriate incentive payments that depend on the cross infer-
ence signals, and extracted the agents’ private information. Liu [19] considered
a dynamic setting with coupled dynamics, and utilized the inter-temporal cor-
relation among agents’ types to form cross inference signals for each agent that
lead to truthful reporting at each time instant.

We provide a similar approach as the one in [19]. We utilize the inter-temporal
correlation between agent i’s security state θi

t at t and other agents’ security state
θj

t+1, j �= i, at t + 1 and form a cross inference signal that determines agent i’s
payment over time. We show that such cross inference signals enable the network
manager to align the agents’ self-interests with the overall social interest, and
maximize the social welfare W .

3.1 Specification of the Mechanism

In this section we present a ‘Dynamic Cross Inference’ (DCI) mechanism that
maximizes the social welfare subject to the IC and IR constraints (9). The
description of our mechanism is divided into two parts: the allocation policy
{πt(·), t ∈ T }, and the monetary transfers {pi

t(·), i ∈ N, t ∈ T }.

Allocation Policy. The specification of the allocation policy is based on the
premise that the mechanism is incentive compatible. In an incentive compati-
ble mechanism the agents report their security states truthfully. Therefore, the
network manager is faced with a stochastic control problem with complete infor-
mation. We design the allocation policy of our mechanism to be an optimal
solution to this problem which we denote by π∗, i.e., πt = π∗(rt), ∀t ∈ T . In
Sect. 4, we discuss how the network manager can find such an optimal policy.

Monetary Transfers. To obtain an incentive compatible mechanism, we design
monetary transfers so that they exactly align the incentives of each agent with
the social welfare. Since agents’ valuations are interdependent, we cannot use the
idea of Groves’ mechanism by simply paying each agent i the total valuations
of other agents, because the valuations of agents except i depend directly on
the report of agent i, and this creates incentive for misreporting. To fix this, we
utilize the correlation between agent i’s security state θi

t at t and other agents’
security states θj

t+1, j �= i, at t + 1 and form a cross inference signal about the
security state of agent i which is independent of his own reports. We use this
cross inference signal to align the objective of agent i with the social welfare.

Specifically, let r−i
t denote the report profile of all agents except agent i at

time t. We define the cross inference signal for agent i at time t as follows:

mi
t =

{
0, if rj

t+1 = 0,∀j ∈ Oi,

1, otherwise,
(10)

where Oi := {j ∈ N : i ∈ N j} is the set of output neighbors of agent i. If at time
t+1, all output neighbors of agent i report to be unsafe, the manager interprets
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this as a signal that agent i was unsafe at time t. Otherwise, he assesses agent i
as a safe agent.

By using the cross inference signal mi
t, we construct payments pi

t+1 such that,
in expectation, at time t+1 agent i receives the sum of time-t flow valuations of
all other agents. So agent i’s continuation payoff at time t is equal to the social
surplus from time t onward. With this in mind, we define the tax pi

t+1(m
i
t, r

−i
t , at)

to be paid by each agent i at time t + 1, as the solution to the following system
of linear equations:

P(mi
t = 0|θi

t, r
−i
t , at)pi

t+1(0, r−i
t , at) + P(mi

t = 1|θi
t, r

−i
t , at)pi

t+1(1, r−i
t , at) =

− 1
δ

∑

j �=i

vj(θt, at),∀θi
t ∈ Θ, (11)

where P(mi
t|θi

t, r
−i
t , at) is the probability of mi

t given θi
t, r−i

t and at, assuming
truthful reports of agents except i, i.e. r−i

τ = θ−i
τ , τ = t, t + 1.

Lemma 1. For any at and r−i
t , the system of equations (11) has a solution.

Therefore, payments pi
t+1 are always well-defined. Using these payments the

network manager is able to align the objective of each agent with the social
welfare since,

vi(θt, at) − δ E{pi
t+1(m

i
t,θ

−i
t , at)} =

∑

j∈N

vj(θt, at). (12)

This feature is the key to proving the main result of this paper stated below.

Theorem 1. The DCI mechanism maximizes the social welfare and satisfies
the IC and IR constraints, therefore, it is an optimal solution to the dynamic
incentive design problem (9) for the network manager.

3.2 Budget Balance

The DCI mechanism proposed in Sect. 3.1 efficiently solves the problem net-
work manager faces (9), however, the transfers are not budget balanced. When
the agents adopt truthful strategies, the total amount of monetary transfers
the network manager receives from the agents is negative. This means that the
mechanism runs large deficits subsidizing agents. In this section we show that
this budget deficit can be alleviated by introducing a set of participation fees.

At time t = 0 and before realizing the first period’s security states θi
0, each

agent i can decide whether or not to participate in the mechanism1. If he decides
to participate, he should pay a participation fee p̃i

0. We construct participation
fees such that in expectation, their total amount is equal to the total amount of
future subsidies. We define the participation fee of agent i by

p̃i
0 =

−1
N − 1

∑

j �=i

E{
∞∑

t=0

δtpj
t}, (13)

1 Equivalently, we can assume that all agents start from the safe state θi
0 = 1.
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where the expectation is taken with respect to agents’ strategies determined by
the mechanism, the initial distribution of the security states which is assumed
to be known to the network manager and the agents, and the dynamics of the
security network. Adding these fees balances the budget as

∑

i

p̃i
0 + E{

∞∑

t=0

δtpi
t} = −E{

∞∑

t=0

δtpi
t} + E{

∞∑

t=0

δtpi
t} = 0. (14)

Therefore, the DCI mechanism with participation fees is ex-ante budget bal-
anced. With the introduction of the participation fees, an agent might rather
stay out of the mechanism to avoid paying the participation fee while he still
enjoys the positive externality that he receives from other agents’ participation
in the mechanism. Below, we show that for sufficiently patient agents, all agents
voluntarily participate in the DCI mechanism with participation fees.

Theorem 2. For δ sufficiently close to 1, the DCI mechanism with participa-
tion fees is ex-ante budget balanced, satisfies the IC and IR constraints, and
maximizes the social welfare W .

4 Dynamic Optimal Policy for the Network Manager

In this section, we study the control problem that the network manager must
solve to find an optimal allocation policy π∗, when the agents reveal their secu-
rity states {θt} truthfully. In this case, the network manager is faced with a
Markov decision process (MDP) with perfect observations, where the transition
probabilities are given by (1) and (2) and the instantaneous reward is given by

r(θt, at) :=
n∑

i=1

vi(θt, at). Using dynamic programming [14], the network man-

ager can solve this problem numerically, and find an optimal policy. However,
there are some settings where qualitative properties of an optimal policy can be
derived analytically. In the following, we discover qualitative properties of an
optimal policy within the context of a specific network topology.

Example. Consider a circular network with n = 4 agents, where h = 1, di = 0,
and lij = l ≤ 0.5, for all i, j that are adjacent agents. The next proposition fully
describes an optimal policy for this setting and the behavior of the corresponding
value function.

Proposition. (i) An optimal policy π∗ applies the security measure to one of
the head ends of the shortest ‘run of unsafe agents’. A run of unsafe agents of
length k is a succession of k unsafe agents consecutively located between two
safe agents.

(ii) The value function V ∗(.) induces a complete ordering on the set of states,
such that a state with a greater number of safe agents is strictly preferred to a
state with smaller number of safe agents. In the case of equality, the state with
a longer run of unsafe agents is strictly preferred.
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The above proposition provides two metrics in comparing security states: (1)
the number of safe agents and (2) how close the unsafe agents are to one another.
Numerical results show that these two metrics still work in symmetric circular
networks with an arbitrary number of agents. This means that if l is below a
certain threshold, an optimal policy tries to first maximize the number of safe
agents, and then, bring the unsafe agents close to one another. To do so, the
network manager applies the security measure to one of the head ends of the
shortest run of unsafe agents.
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