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Abstract. This study presents an adaptation of finite population evo-
lutionary stable strategy definition by Schaffer in [1,2] to perfect infor-
mation extensive form games. In this adaptation, players reach a finite
population evolutionary stable strategy equilibrium by using finite popu-
lation evolutionary stable strategies which ensure that the game ends up
with equal payoffs. We studied the fpESS equilibria of some famous two-
player bargaining games such as the ultimatum game, the dictatorship
game and a dollar auction game. Not all Perfect Information Extensive
form games have an fpESS equilibrium. However, when there exist an
fpESS equilibrium in these games, the outcome is a perfectly fair one;
that is, all players get equal payoffs.

Keywords: Perfect information extensive form game · Ultimatum
game · Fairness · Finite population evolutionary stable strategy

1 Introduction

Perfect Information Extensive Form games are very important in game theory.
As one of them, the ultimatum game is a widely researched problem. There is
some amount of money that the first player is asked to divide between himself
and the second player. If the second player does not accept his share, he rejects
it and both players take nothing. If he accepts the offer, both players take the
amounts that they hold. The dictatorship game is also widely researched in
game theory. The first player determines the shares again, but the second player
cannot reject the offer.

When we look at the experiments on the ultimatum game, the results that
we encounter are very different than the theory predicts. Second players often
reject the offers less than half of the money and first players are willing to offer
much more than the least that they can offer [3,4]. However, when we look at
the experimental results of the dictatorship game, first players are more selfish
and they offer much less compared to the offers in the ultimatum game.

The first and the second player consider each other’s actions in the perfect
information extensive form games. Even if it does not seem rational, it is impor-
tant to get greater or equal payoff for players. Evolutionary Stable Strategies
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

L. Duan et al. (Eds.): GameNets 2017, LNICST 212, pp. 51–59, 2017.

DOI: 10.1007/978-3-319-67540-4 5



52 A. Vargün and M.E. Dalkılıç

(ESS) take this point into account. Therefore, we decided to study fpESS (finite
population ESS) approach to analyze the perfect information extensive form
games and especially the ultimatum and the dictatorship games. We show that
for some perfect information extensive form games, there are some finite popu-
lation evolutionary stable strategies that a player can quarantee a payoff at least
as large as any opponent’s payoff. When players pick one of these strategies, they
can prevent to be beaten by their opponents (receiving a smaller payoff than any
of the opponent’s).

In the rest of the paper we first give, in Sect. 2, the relevant background
and definitions for the application of fpESS to Extensive Form games followed
by, in Sects. 2.1 and 2.2, the work to find the fpESS equilibria for three well
known game instances: the ultimatum game, the dictatorship game and the
dollar auction game.

2 Adaptation of FpESS to Extensive Form Games
in Induced Form

The fpESS concept is introduced in [5] and restated as the following definition.

Definition 1. Let S be the strategy set of a symmetric normal form game. An
fpESS s is a strategy in which ∀s∗ ∈ S, u(s, s∗) ≥ u(s∗, s) (by Schaffer [1,2]).

In the fpESS concept, the game is symmetric and the players have the same
strategy sets. We applied this approach to the induced normal forms of extensive
form games. It is obvious that an induced normal form does not have to be
symmetric. However, we can apply this definition to the induced normal form of
extensive form games.

Definition 2. Let S1, S2, ..., Sn be the strategy sets in the induced normal form
of a perfect information extensive form game with n players. A strategy si ∈ Si

is an fpESS if ∀j, ui(si, s−i) ≥ uj(sj , s−j) for all s−i ∈ S−i and s−j ∈ S−j where
S−i = (S1 × ...Si−1 × Si+1... × Sn) and S−j = (S1 × ...Sj−1 × Sj+1... × Sn).

Definition 2 implies that a strategy si is an fpESS for player i if there is no
strategy available to any opponent that returns a greater payoff than that of the
ith player’s payoff.

Definition 3. If ∀i s∗
i is an fpESS, then (s∗

1,..., s
∗
n) is an fpESS equilibrium.

Example 1. Consider a two player game with the payoffs z1 = (10, 10), z2 =
(30,−30), z3 = (−20, 20). This extensive form game tree is shown in Fig. 1(a).
When the induced normal form of this game is obtained as shown in Table 1,
we see from the row labeled s1, i.e., [(10, 10), (30,−30)], that the first players
payoff is always greater than or equal to the second player. In other words
strategy s1 is an fpESS for the first player. Similarly from the column s3, which
is [(10, 10), (−20, 20)], under this strategy the second player’s payoff is at least as
big as its opponent, and thus s3 is an fpESS for the second player. Thus, (s1, s3)
is an fpESS equilibrium.
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Fig. 1. Two examples of perfect information extensive form games (a) A two player
game, (b) A three player game

Table 1. Induced normal form of the game in Fig. 1(a) with the payoffs z1 =
(10, 10), z2 = (30,−30), z3 = (−20, 20)

s3 s4

s1 (10, 10) (30,−30)

s2 (−20, 20) (−20, 20)

In a perfect information extensive form game, there does not have to be an
fpESS equilibrium.

Example 2. Assume that in Fig. 1(a), z1 = (10,−10), z2 = (−20,−30), z3 =
(0, 0). Although the first player has two fpESSs (s1 and s2), the second player
has no fpESS. Therefore, there is no fpESS equilibrium for this game. This
shows that a player may not have an fpESS and a game may not have an fpESS
equilibrium.

Example 3. We can analyze some famous cases. Pyrrhic victory is one of them
in which the result is so devastating that the victor loses everything except the
victory. This devastating lost is equal to defeat. We applied this result to the
game tree in Fig. 1(a). The terminal nodes are z1 = (a1, b1), z2 = (a2, b2), z3 =
(a3, b3).

Let S1 be going to war, S2 be not going to war as the strategies of the king
Pyrrhus of Epirus and S3 be accepting the challenge and going to war against
Pyrrhus, S4 be surrendering without battling as the strategies of the Romans at
Heraclea in 280 BC.

In this game, if we assume that a1 = b1, a2 > b2,a3 ≤ b3, we see that (going
to war as Pyrrhus, going to war as the Romans) is an fpESS equilibrium. Here
our assumption is that when both sides go to war, they will lose everything
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equally, when Pyrrhus choose not to go to war, the Romans’ payoff is greater
than or equal to Pyrrhus, and finally when Pyrrhus goes to war and the Romans
surrender, the Pyrrhus’s payoff is greater than the Romans’ payoff. This victory
can be modeled in different ways. In this model, we have an fpESS equilibrium.
We interpret this as both sides can do anything in order not to be beaten by the
opponent in war.

Example 4. Consider the perfect information extensive form game with three
players in Fig. 1(b). Here, there are 8 outputs whose paths are (a1, b1, c1),
(a1, b1, c2), (a1, b2, c3), (a1, b2, c4), (a2, b3, c5), (a2, b3, c6), (a2, b4, c7), (a2, b4, c8)
in this game. [a1, (b1, b3), (c1, c3, c5, c7)] is an fpESS equilibrium.

In Tables 2 and 3, the second player’s payoff is greater than or equal to
the first and the third players’ payoffs in (a1, b1, c1), (a1, b1, c2), (a2, b3, c5) ,
(a2, b3, c6).

The third player’s payoff is greater than or equal to the first and the second
player’ payoffs in (a1, b1, c1), (a1, b2, c3), (a2, b3, c5), (a2, b4, c7).

The first player’s payoff is greater than or equal to the second and third
players’ payoffs in (a1, b1, c1), (a1, b1, c2), (a1, b2, c3), (a1, b2, c4).

It may be hard to find a game with an fpESS equilibrium in which all players
participate. However, if some of the players have fpESS strategies, they can
choose them to play mutually.

Table 2. When the first player selects a1

(c1, c3) (c1, c4) (c2, c3) (c2, c4)

b1 (a1, b1, c1) (a1, b1, c1) (a1, b1, c2) (a1, b1, c2)

b2 (a1, b2, c3) (a1, b2, c4) (a1, b2, c3) (a1, b2, c4)

Table 3. When the first player selects a2

(c5, c7) (c5, c8) (c6, c7) (c6, c8)

b3 (a2, b3, c5) (a2, b3, c5) (a2, b3, c6) (a2, b3, c6)

b4 (a2, b4, c7) (a2, b4, c8) (a2, b4, c7) (a2, b4, c8)

2.1 FpESS Equilibria of Ultimatum and Dictatorship Games

Ultimatum game is a widely researched bargaining problem. We used [6] to
express the equilibria in the ultimatum game. In this game, one of the players
must divide A dollar as (A − x, x). He takes A − x to himself, gives x to the
other player. If the second player accepts this sharing, he takes x and the first
player takes A − x. If he does not accept the sharing, all the players take zero
as their payoffs.

Payoffs do not have to be integers. For any value of x, there is a subgame
for the second player. In this case, we can analyze the second player’s action for
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each x value. x can be zero or greater than zero. When x is zero, to say yes or
no is indifferent for the second player. When x is greater than zero, the second
player says yes because x > 0. By this, we have two optimal strategies for the
second player. The first is to say yes for x ≥ 0. The second is to answer yes for
x > 0 and no for x = 0.

Assume that offered payoffs are not integers. For the second player’s first
optimal strategy, the first player must offer zero. For the second player’s second
optimal strategy, the first player must offer any value greater than zero. Thus,
first player’s optimal strategy (considering the optimal strategies for player 1) is
to offer the smallest x > 0. However, if the offers are made in real numbers, there
is no such smallest x > 0. However, if offered values are integer, for Example 1
cent as the least value, the first player must offer 1 cent to the second player.

In this game, the subgame perfect equilibrium is that the first player offers
zero and the second player accepts this. When the offered values are integers,
we have one more subgame perfect equilibrium so that the first player offers the
least value x > 0 to the second player, the second player accept this. However,
when we look at the experiments, we do not see the theoretical predictions (that
is, the first player offers the least positive amount and the second player accepts
this minimum offer) are realized. Instead, we encounter more fair outcomes where
offers considerably higher than minimum are typical and minimum offers usually
rejected.

When we investigate the ultimatum game for any amount N , we see the
remarkable feature of fpESS’s is that a player does not offer more than half in
the first position and a player does not accept less than half. When two players
pick fpESS strategies to play, game ends fairly.

Proposition 1. In an ultimatum game, let N ∈ R be the total payoff to share.
∀N ∈ R a strategy s ∈ S1 in the induced normal form is an fpESS if and only if
it includes always to offer less than or equal to N/2 as first player’s strategy.

Proof. If ∀N ∈ R a strategy s ∈ S1 in the induced normal form is an fpESS,
then it includes always to offer less than or equal to N/2 as first player’s strategy.
Assume that s is an fpESS, but it does not include to offer less than or equal
to N/2. There exists a cell in the induced matrix row in which the first player
offers more than half. The first players payoff becomes less than the second
players payoff. This is in contrast with the definition of fpESS. Our assumption
is invalid.

If ∀N ∈ R a strategy s ∈ S1 in the induced normal form includes always
to offer less than or equal to N/2 as first player’s strategy, then it is an fpESS.
Assume that s includes always to offer less than or equal to N/2, but it is not
an fpESS. There is a cell where s resides in which the first player’s payoff is
less than the second player’s payoff. This is a contradiction; our assumption is
invalid. ��
Proposition 2. In an ultimatum game, ∀N ∈ R a strategy s ∈ S2 in the
induced normal form is an fpESS if and only if it includes always not to accept
any offer less than N/2 as second player’s strategy. ��
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Proof. If ∀N ∈ R a strategy s ∈ S2 in the induced normal form is an fpESS,
then it includes always not to accept any offer less than N/2 as second player’s
strategy. Assume that s is an fpESS, but it includes to accept an offer less than
N/2 as second player’s strategy. There exists a cell in the induced matrix column
in which the second player accepts less than half. The second players payoff
becomes less than the first players payoff. This is contrast with the definition of
fpESS. Our assumption is invalid.

If ∀N ∈ R a strategy s ∈ S2 in the induced normal form includes always
not to accept any offer less than N/2 as second player’s strategy, then it is an
fpESS. Assume that s includes always not to accept any offer less than N/2, but
it is not an fpESS. There is a cell where s resides in which the second player’s
payoff is less than the first player’s payoff. However, we accept that s includes
always not to accept any offer less than N/2 as second player’s strategy. This is
contradiction. Our assumption is invalid. ��
Proposition 3. In an ultimatum game, ∀N ∈ R, an fpESS equilibrium is an
outcome in which s1 ∈ S1 and s2 ∈ S2 are fpESSs. The payoffs in the fpESS
equilibrium are equal. ��
Proof. If s1 and s2 are fpESSs, then there are two possible solutions for the game.
If the first player offers N/2 to the second player, he accepts and the game ends
(N/2, N/2) which the payoffs which are equal. If the first player offers less than
N/2 to the second player, he does not accept and the game ends with the payoffs
with equal payoffs (0, 0). ��

fpESS equilibrium finalizes the game so that players can’t gain advantage
over each other. However, when we cannot do anything in a game in order not
to be beaten by our opponent, we do not have an fpESS and there is not an
fpESS equilibrium in the game. An example of this type of game is dictatorship
game where the second player has no power to affect the outcome of the game.
Dictatorship game does not include an fpESS for the second player and does not
have an fpESS equilibrium.

2.2 FPESS Equilibrium of an Instance of the Dollar Auction Game

The Dollar auction game is a sequential game designed by Martin Shubik [7] to
show that players are led to make irrational decisions in a perfect information
game. In the game, the winner and the second highest bidder pay the last dollar
amount that they bid. The game starts with a randomly selected player. When
the first player says 5 cents, the second player can escalade the number by saying
10 cents or he can give up the game. If he says 10 cents, the first player can
escalade the number by saying 15 cents, or he can also give up the game. If the
first player gives up the game at this point, he pays 5 cents and he wins nothing.
The second player pays 10 cents and he wins a dollar.

However, one bids 1.05$, another may bid 1.10$. They escalade the number
above 1$ in order not to risk losing the game because they must pay the last
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dollar amount they bid even if they lose. At this point, bidding above 1$ is not
rational to win a dollar as prize.

An example of this game is presented in [8]. There is 3$ as the prize and the
maximum amount that a player can bid is 4$. The original game does not have
an upper limit, but here there is.

Example 5. We adapted above game so that 2$ is the prize and the maximum
amount that a player can bid is 3$. When a player says 3$, he wins the game
but loses 1$. The game tree is given in Fig. 2.

0,2

1,0

-1,0 -1,-2

-1,-1 0,0

-2,-1

-1,0

0$
1$

2$
3$

0$
2$ 3$

0$ 3$

0$
3$

1.player

1.player

2.player 2.player

Fig. 2. A dollar auction game example with 2$ prize

We benefited from [9] to analyze the subgame perfect equilibrium for this
game. The only difference between the game in Fig. 2 and the game in [9] is one
of the first moves of first player. In our game, when the first player bids 0$, the
game ends with the payoffs (0, 2). On the other hand, in the game given in [9]
if the first player bids 0$, the game ends with the payoffs (0,0). The subgame
perfect equilibria are [(1$, 0$), (0$, 0$)], [(2$, 0$), (2$, 0$)], [(0$, 0$), (2$, 0$)],
[(1$, 3$), (0$, 0$)]. These two games have the same subgame perfect equilibria
because none of the first player’s first moves in our game changes.

For example, the strategy that the first player will play in [(1$, 3$), (0$, 0$)]
is to play 1$ for the first move and to play 3$ for the last move in the tree. The
strategy that the second player will play is to move 0$ for the subtree tied to
1$, to move 0$ for the subtree tied to 2$.

In this game, the first player has one fpESS. At the beginning, his move is
1$. If the second player plays 2$, he plays 3$. (1$, 3$) is the first player’s fpESS.
The second player has two fpESS’s. These are (3$, 0$) and (3$, 3$). If the first
player plays 1$, the second player plays 3$. If the first player plays 2$, the second
player plays 0$ or 3$. The game ends up with (−1,−1). We can interpret the
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second player’s behavior as risking himself and the other player in order not to
be beaten in the game. He does not want to gain less than or lose more than the
opponent.

3 Conclusion

When we determine a strategy to play in a perfect information extensive form
game, we consider our opponents’ possible strategies. If we do not want to be
beaten by our opponent at any cost, we use finite population evolutionary stable
strategies if exist. It is hard to say that a player who uses these strategies is
rational, but we frequently encounter this attitude in real life.

In an fpESS equilibrium, the players select the strategies so that they don’t
get less than their opponent. It guarantees that when we use an fpESS, the game
will end up with a tie. This may bring a new understanding for player attitudes
and their positions in the perfect information extensive form games.

In ultimatum game, the theoretical solutions do not explain experimental
results thoroughly. In ultimatum games, when the second player picks a strategy
that brings him to an fpESS equilibrium, he can’t be worse off than the first
player. When the first player knows this, he does not offer any unacceptable
amount to the second player. He knows that any unfair (less than half the total
amount) offer will be rejected. Any fpESS strategy which brings the players to
an fpESS equilibrium ensures the game ends up fairly.

In dictatorship game, there is nothing to do for the second player when he
does not want to gain less than the first player, thus there does not exist any
fpESS and fpESS equilibrium in the dictatorship game.

In the instance of dollar auction game that we have analyzed, the fpESS
equilibrium can be interpreted as any bidder can risk losing more and more by
continuing with higher bids. A player can prefer staying in the game and losing
equally (with the opponent) to withdrawing from the game earlier with relatively
more loss.

We suppose there may be an intersection between subgame perfect equilib-
rium solution concept and fpESS equilibrium, it is a new research topic.
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