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Abstract. We study network selection games in wireless networks. Each
client selects a base station to maximize her throughput. We utilize a
model which incorporates client priority weight and her physical rate on
individual Base Stations. The network selection behavior considered is
atomic, implying that a client connects to exactly one Base Station.

We formulate a non-cooperative game and study its convergence to a
pure Nash equilibrium, if it exists, or prove non-existence otherwise, and
present algorithms to discover pure Nash equilibrium for multiple cases.

1 Introduction

Enhancements in wireless connectivity involve the ability to choose the best
available network connection. This is evident in recently put forth proposals and
implementations, where a wireless device selects the provider (base station) and
type of access (Wi-Fi, WiMax or GPRS schemes, femto etc.) which permits the
best speed or rate, on the basis of location and availability (Google Fi services
is an example). Moreover, priority weights, ensuring individual user priorities
according to fixed agreements, are being increasingly suggested by providers.
These priority agreements would serve to provide Quality of Service (QoS).

Throughput analysis of accessing heterogeneous radio technologies has been
studied in [1–4] where clients utilize information from the access networks
(termed RAT or RAN) to determine the choice of network access points (also
referred to as Base stations). The standard approach is to consider the clients
to be autonomous agents. Alternately, rules can be imposed on the RAN clients
to regulate traffic.

The key decision for users in such a model is the selection of the network
access point. The system of autonomous agents competing for a limited set of
resources gives rise to a congestion game. Such a system leads to the formation
of a complex system model where a user (client) would select, based on priority
weights, a provider’s base station and an instantaneous PHY rate provided by the
base station, as has been utilized in [4], depending on current physical conditions
like base station load, location or even radio bandwidth congestion. All such
factors would determine the throughput that a client would be able to obtain
on a base station.

Every client seeks to maximize her own total throughput without regard for
how other clients are affected by her actions and thus, we formulate a game
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where each client behaves selfishly to maximize her throughput. Such a game-
theoretic model has previously been studied also in [3,4]. Additional throughput
or utility models can be found in the survey paper [1]. We term the above model
as an atomic throughput game, also termed as a RAN selection game in previous
papers. These previous papers leave a number of unresolved issues regarding the
existence of pure Nash equilibrium (interchangeably, for simplicity, referred to
as Nash equilibrium in this paper) in the defined games.

The RAN selection game falls into the class of congestion games. Atomic
congestion games with a cost function dependent on the number of clients occu-
pying a resource were first studied in [5] with consequent work on client specific
utilities in [6]. The computational complexity of determining Nash equilibrium in
these games was studied in [7], where they showed that atomic congestion games
with arbitrary cost functions are PLS-Complete. Wireless congestion games and
cost network specific cost functions have been studied in [2,8,9]. Unlike the prior
studies, the model in [3,4] utilizes the throughput itself as a metric of perfor-
mance. Additional game theoretic models using evolutionary games [10,11] have
been studied but are not relevant as these models correspond to non-atomic
versions of the game with large number of users, each with infinitesimal impact.

In this paper we consider the RAN selection game:

– We first show that pure Nash equilibrium does not always exist for the RAN
selection game with non-uniform weights and rates, implying that the system
might not stabilize at all. This resolves a question left unanswered in [3,4]
where Aryafar et al. alluded to such a result. Resolving the existence and
complexity of Nash equilibrium is considered important as it characterizes
the convergence towards stability of such autonomous systems. We consider
interesting practical cases and prove that pure Nash Equilibrium always exists
if the user has uniform or identical priorities over all base stations. We pro-
vide an ε-approximate Nash Equilibrium algorithm which runs in polynomial
time in this case, as well as a polynomial algorithm to compute pure Nash
equilibrium when, additionally, rates are uniform.

– We consider priority regulated games, where priority can be used to regulate the
throughput rate and disprove a conjecture from [4] which states that a Nash
Equilibrium always exists in games where the priority weights is a polynomial
function of the rates. On the positive side, we provide a simple fairness rule that
ensures convergence to a solution which is stable, i.e. no further improvements
are possible. This stable point may not be a Nash equilibrium of the original
strategy space but the system is stable under the rule.

1.1 Network Model

The wireless selection problem has a set of clients P accessing a set of wireless
access points, which we refer to as Base Stations, K. The base stations represent
the range of wireless access points, Wi-Fi and GPRS etc. Each client accesses
a base station and negotiates a rate of access. The wireless selection problem is
that of scheduling clients to base stations to optimize throughput. We represent
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the wireless selection problem by a network model where the underlying graph
is a bipartite graph represented by G = (P,K,E). The clients are represented
by one (independent) vertex set P and the set of Base Stations (BS), K, the
second (independent) vertex set. The set of edges E represents the base sta-
tions available between the clients in the set P and the base stations. An edge
e = (i, k), i ∈ P, k ∈ K exists if and only if the client i can access base station k.
Each client i is characterized by two parameters, the weight φi,k that provides
her a priority on a base station k ∈ K and the PHY rate Ri,k that she can obtain
on that base station k. The throughput that the clients acquire from the base
station k is dependent on the other clients that utilize the base station.

Throughput Model. The throughput model we use is based on the model in [3,4]
that defines the throughput client i obtains on base station k as

ωi,k =
φi,k

∑
j∈s(k)

φj ,k
Rj ,k

where s(k) is the set of clients that are currently accessing base station k.
Since each client has an independent choice of scheduling her traffic on the

available base stations, the rational autonomous decisions of the client can be
modeled by a game:

A Throughput Game is denoted by TG(P,K, φ,R) where P are the clients
(clients) in the game, K is the set of base stations, φ : P × K → R

+ is a
function representing the priorities (weights) of clients on the base stations K,
R : P × K → R

+ is a function representing the rates the clients have obtained
on the base stations. In a throughput game, a client selects one base station
to transfer data, and given the selection of the other clients, selfishly selects
the base station on which she receives maximum throughput. We also consider
restricted models defined below:

1. Different types of traffic require a priority that is dictated by their type,
e.g., video traffic requires a certain priority level, and do not depend on the
base stations, leading to Uniform Priority Throughput games, denoted
by TGP (P,K, φ,R), where the priority levels are independent of the base
stations, i.e. φi,k = φi,k′ = φi,∀k, k′.

2. Furthermore, devices may only be able to communicate at a particular rate,
leading to Uniform Rate Throughput games, denoted by TGR(P,K, φ,
R), where the rates achieved by a client i is independent of the base stations,
i.e. Ri,k = Ri,k′ = Ri,∀k, k′.

We define the Load on a base station k, when a set s(k) of clients are scheduled
on base station k, to be Gs(k) =

∑
j∈s(k)

φj,k

Rj,k
where the contribution of a client

j to the load is φj,k

Rj,k
. Note that when i is the only client on a base station k, she

gets throughput ωi,k = Ri,k.
A pure Nash equlibrium is defined as an assignment of clients to base stations

such that no client can unilaterally improve her throughput by switching to a
different base station.
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2 Nash Equilibrium in Throughput Games

We first resolve the question of existence of Nash equilibrium in throughput
games, left unanswered in [4].

Theorem 1. There exists a throughput game, TG(P,K, φ,R), for which there
is no pure Nash equilibrium.

Proof. In order to determine an example for a game, a Monte Carlo algorithm
was used to generate the base station rates and priorities. In a game involving
3 clients and 3 base stations, the following values of φ and R present a scenario
such that no configuration of assignments result in any client being satisfied on
the base station she occupies. The matrix Φ represents the priorities φi,k and
the matrix R represents the rates Ri,k.

Φ =

⎡

⎢
⎢
⎣

L1 L2 L3

P1 9.8 1.6 5.1
P2 8.1 0.2 8.6
P3 4.6 3.9 8.8

⎤

⎥
⎥
⎦ R =

⎡

⎢
⎢
⎣

L1 L2 L3

P1 98.3 80.8 12.6
P2 27.6 32.6 21.2
P3 65.8 14.9 9.8

⎤

⎥
⎥
⎦

Any configuration in this instance results in cycling. To illustrate one such cycle,
consider an initial configuration (2, 1, 1) denoting that client 1 is on link 2, client
2 is on link 1 and client 3 is on link 1. Client 3 can obtain a higher throughput
than what she already has by moving from link 1 to link 2, and does so. The
configuration is thus (2, 1, 2), following which, Client 1 then switches to link 1 to
obtain a higher throughput, yielding the configuration (1, 1, 2). The configuration
keeps changing and eventually cycles back to a previous state. The cycle is shown
in Fig. 1.

Fig. 1. Client cycling in a throughput game where Nash equilibrium does not exist

2.1 Nash Equilibrium in Uniform Priority Throughput Games

Since we have shown that a Nash equilibrium may not always exist in throughput
games, we study its existence in Uniform Priority Throughput Games.

Theorem 2. Every instance of a Uniform Priority Throughput game,
TGU (P,K, φ,R) (where φik = φil = φi), has a pure Nash equilibrium.
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Proof. Given an assignment of clients to base stations, characterized by speci-
fying s(k), the set of clients on base station k, we first establish an inequality,
which provides a condition under which a client switches to another base station.
Consider a client i who chooses to make a move from k to k′ to get a higher
throughput. For this move to occur, we must have

φi
∑

j∈s(k′)
φj

Rj ,k′ + φi

Ri,k′
>

φi
∑

j∈s(k)
φj

Rj ,k

(1)

The load on base station k is
∑

j∈k
φj

Rj ,k = Gs(k), as defined in the network
model. Inequality (1) then becomes

Gs(k′) +
φi

Ri,k′
< Gs(k) or equivalently, Gs′(k′) < Gs(k) (2)

where Gs′(k′) = Gs(k′) + φi

Ri,k′ is the load of base station k after i moves.
This expresses the fact that when client i moves from base station k to k′ to

increase her throughput, the load on base station k′ after the move must be less
than the pre-move load of k, otherwise client i would have had no incentive to
move.

We then consider a vector L = {{Gs(k1), · · · , Gs(k), Gs(k′), · · · , Gs(kK)} s.t.
{Gs(k1) > · · · > Gs(k) > Gs(k′) > · · · > Gs(kK)}}, i.e., k1 is the base station with
the highest load and kK is the base station with the smallest load. Our claim
is that the load vector L, which is the sorted loads of base stations, decreases
(in lexicographic ordering) for every move that client i makes to increase her
throughput. We prove our claim below:

We define the position (increasing from left to right) of the load of a base
station k in a load vector L by πL(k). Let L be the load vector before client i
moves and L′ be the load vector after i has moved. Note that πL(k) ≤ πL′(k).
There are two cases:

1. πL′(k) < πL′(k′): Since Gs′(k) < Gs(k), the lexicographic value of L′ will be
less than L.

2. πL′(k′) < πL′(k): Since Gs′(k′) < Gs(k) from inequality (2), the lexicographic
value of L′ will be less than L.

Each of the cases indicate that the vector L will lexicographically decrease
for every move that improves the throughput of a client. To show that the
minimum load on each base station is lower bounded by a positive value, let
φmin = mini∈P φi and Rmax = maxi∈P,k∈K Ri,k. The minimum load on each
base station, which is occupied by at least one client, is then at least φmin

Rmax
.

Therefore, the uniform throughput priority game will always converge to a pure
Nash equilibrium.

2.2 ε-Approximate Nash Equilibrium for Uniform Priority Models

Based on the proof of Theorem 2, we observe that Nash equilibrium can be
determined by allowing clients to improve their throughput by switching base
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stations. The number of improvement steps of the lexicographic ordering in vec-

tor L is upper bounded by O
(
|P | ×

∑
i∈P,k∈K

φi
Ri,k

δ

)
, where δ is the minimum

change in lexicographic value caused by a switch. When the values of φij and
Rij are integers, δ ≥ 1

R2
max

. Similar bounds can be established for rationals.
Finding a polynomial time algorithm for determining Nash equilibrium appears
difficult. Therefore, we specialize certain parameters to obtain faster algorithms
for achieving a near-Nash equilibrium state.

We first define an ε-approximate Nash equilibrium: A throughput game
is at an ε-approximate Nash equilibrium if for every client, a switch to another
base station improves her throughput by a factor of at most (1 + ε).

Algorithm 1. Finding ε-approximate Nash equilibrium in TGP (P,K, φ,R)
1: Start with any random assignment of clients, where the set of clients on base station

k is given by s(k), ∀k.
2: while ∃ clients who can improve their throughput by a factor of (1+ε) by switching

to another base station do
3: Select client i s.t. (i, k′

i) = argmin(i,k′(i))(Gs′(ki) +Gs′(k′
i)
+
∑

k∈K,k �=ki,k′
i
Gs(k))

where i is assigned to ki and moves to k′
i, and s′(k) denotes the set of clients on

k after the movement of i.
4: Move i from ki to k′

i.
5: end while

Theorem 3. Given an instance of a Uniform Priority Throughput Game, Algo-
rithm 1 finds a ε-approximate Nash equilibrium in time O(t × P × K), where
t = log1+ε

Rmax
φmin

+log1+ε

∑
i∈P ( φ

R )imax is the upper bound on the number of steps
a client moves, where ( φ

R )imax = maxk,k′∈K
φk

Rk′ .

Proof. We have already established that a switch implies a lexicographic decrease
of vector L, as shown in Theorem 2, and therefore, assured that the approximate
Nash equilibrium is achieved by the algorithm.

To calculate the time complexity, we provide an upper bound t on the number
of times a client would have to switch to reach her final choice of base station.
Since a client i can only move if she gains a factor of (1 + ε) on her current
throughput, t can be calculated by comparing the lower bound and upper bound,
termed ωimin and ωimax , respectively, on her possible throughput.

We obtain the value of ωimax for a client i by placing her alone on the
base station where she has the maximum PHY rate Rmax = maxi∈P,k∈K Ri,k,
since the load on the base station increases as soon as she shares a base sta-
tion with another client. Therefore, ωimax = Rmax. Similarly, we get ωimin

by placing the client with the minimum φi (φmin) with all the other clients
in the game, and then by selecting the maximum load contribution of each
client, ( φ

R )imax = maxk∈K( φi

Ri,k
), giving a total load of

∑
i∈P ( φ

R )imax . Therefore,
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ωimin
= φmin∑

i∈P ( φ
R )imax

. We then obtain the bound on t by using the fact that

when the algorithm terminates, the maximum throughput is at most ωimax

ωimin
.

Therefore, (1+ε)t ≤ ωimax

ωimin
, which implies t ≤ log1+ε

Rmax
φmin

+log1+ε

∑
i∈P ( φ

R )imax

which then leads to our result.

2.3 Finding Equilibrium in Uniform Priority-and-Rate Games

While a Nash equilibrium is not easily (in polynomial time) found in Uniform
Priority games, we show that by altering the uniform priority game to include
uniform rates, denoted by TGP,R(P,K, φ,R), a Nash equilibrium can be discov-
ered by a polynomial time algorithm.

Algorithm 2. Finding a Pure Nash equilibrium in TGP,R(P,K, φ,R)

1: Sort clients in non-increasing order of φi
Ri

2: for Client i = 1 · · · |P | do
3: ki = argmink∈K(Gs(k) +

φi
Ri

)
4: Assign client i to base station ki.
5: end for

Theorem 4. Given an instance of a Uniform Priority-and-Rate Throughput
game TGP,R(P,K, φ,R), Algorithm 2 correctly finds a pure Nash equilibrium in
time O(|P |(|K| + log|P |)).
Proof. The algorithm assigns a new client to a base station and ensures that the
client gets maximum throughput, given the current system configuration. For
our algorithm to be correct, an addition of a new client to the system should
not induce any moves.

First, we use contradiction to show that after addition of a new client to a
base station, other clients from that base station do not have an incentive to
move to other links. Let Gs(k) and Gs(k′) be the loads of base stations k and k′

respectively before either client i or i′ have been introduced. Suppose that on
addition of the ith client to base station k, client i′ wants to switch from using
base station k to k′, implying inequality (3),

φi′

Gs(k) + φi

Ri
+ φi′

Ri′

<
φi′

Gs(k′) + φi′
R′

i

⇒ Gs(k′) < Gs(k) +
φi

Ri
(3)

and from the fact that client i was previously assigned to base station k, we have
inequality (4)

φi

Gs(k) + φi

Ri
+ φi′

Ri′

>
φi

Gs(k′) + φi

Ri

⇒ Gs(k′) > Gs(k) +
φi′

Ri′
(4)
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From the sorting performed φi

Ri
in step 1, we have

φi′/Ri′ > φi/Ri (5)

Using the above inequalities, we get the following contradiction

Gs(k′) < Gs(k) +
φi

Ri
< Gs(k) +

φi′

Ri′
and Gs(k′) > Gs(k) +

φi′

Ri′
> Gs(k) +

φi

Ri

In the second case, we show that when a client p is added to a base station k,
clients p′ from other base stations k′(say) do not move to k. Prior to adding p,
p′ had chosen base station k′ over base station k.

∴ Gs(k) +
φp′

Rp′
> Gs(k′) +

φp′

Rp′
⇒ Gs(k) > Gs(k′) (6)

If it were beneficial for p′ to switch to base station k now, the following inequality
must be true

Gs(k) +
φp

Rp
+

φp′

Rp′
< Gs(k′) +

φp′

Rp′
⇒ Gs(k) < Gs(k′) (7)

which is contradictory to inequality (6), thus proving our claim.
The running time of step 1 is O(|P | log |P |) for sorting the values. Step 2 has

|P | iterations of steps 3 and 4, which perform |K| comparisons, thus giving a
total running time of O(|P |(log |P | + |K|)).

3 Nash Equilibrium in Rate-Dependent Priority
Throughput Games

Throughput games where the priorities are a function of the rates have been
investigated in [4]. In this model, φi,k = Rβ

i,k, and the game is denoted by
TGβ(P,K, φ,R). Properties of this model have been studied in [4] where it was
conjectured that Nash equilibrium exists for any value of β. We first disprove
this conjecture and then provide a set of rules under which we prove that a stable
point exists.

Theorem 5. There exists an instance of a Rate-dependent Throughput Game,
TGβ(P,K, φ,R), with φij = R−1.5

ij for which a pure Nash equilibrium does not
exist.

Proof. Similar to Theorem 1, we use a Monte Carlo algorithm to obtain the
values of φij and Rij where φij = Rβ

ij and β = −1.5. The matrix R is

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1 L2 L3

P1 8.719 3.755 4.927
P2 5.802 1.361 5.783
P3 4.824 1.094 4.643
P4 3.340 9.648 8.743
P5 2.818 9.543 4.325

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Values of φ can be generated using matrix R and β = −1.5. In fact, such examples
were found for multiple values of β where β < 0. We illustrate an instance of a
cycle of configurations in Fig. 2. Each configuration of the above instance results
in similar cycles, yielding a system where no pure Nash equilibrium exists.

Fig. 2. Client cycling in a rate dependent throughput game where Nash equilibrium
does not exist

3.1 Conditions for Convergence to a Stable Point

Having established that Nash equilibrium need not always exist, we now establish
a protocol that ensures convergence to a stable point, thus preventing thrashing
in the system.

Fair-Movement Protocol:

The following rules shall apply:

1. When a new client joins a system, she will be automatically assigned to the
base station she has the highest rate on.

2. For every client, say i, switching from base station k to k′ is permitted, only
if Ri,k′ ≤ Ri,k. This is termed as the Fair Movement Rule

The purpose to the Fair Movement Rule is that since a client has already
sought to reject a base station she was assigned a higher rate on, she must not
be allowed to act selfishly with respect to her base rate Ri,k and prevent the
system from stabilizing.

Theorem 6. Under the Fair-Movement Rule, every Rate-dependent
Throughput Game has a stable point; i.e., no client gains by unilaterally changing
to a different assignment.

Proof. Consider a vector L of loads on base stations L = {Gs(k1), Gs(k2), · · · ,
Gs(kK)} s.t. {Gs(k1) > ... > Gs(k) > Gs(k′) > ... > Gs(kK)}}. Note that the load
of a base station is now given by Gs(k) =

∑
1

R1−β
i,k
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Now, client i moves from base station k to k′ (Gs(k) is inclusive of client i)
when she gets a higher throughput on k′,

Gsk

Rβ
i,k

>
1

Rβ
i,k′

(Gsk′ +
1

R1−β
i,k′

) (8)

Using rule 2 of the Fair-Movement Protocol, we have Rβ
i,k − Rβ

i,k′ > 0, therefore

1

Rβ
i,k′

(Gsk′ +
1

R1−β
i,k′

) >
1

Rβ
i,k

(Gsk′ +
1

R1−β
i,k′

) (9)

So, from (8) and (9), 1

Rβ
i,k

Gsk > 1

Rβ
i,k

(Gsk′ + 1

Rβ

i,k′
) ⇒ Gsk > Gsk′ + 1

R1−β

i,k′
,

implying that the vector L decreases in lexicographic ordering every time a
client i switches from base station k to k′. Thus, the game will be stable.

4 Conclusions and Acknowledgements

This paper has presented results for pure Nash equilibrium in a wireless game
model where throughput has been used as the measure of the payoff. It would be
of further interest to include link access costs, client budgets and general utility
functions in the model.

The research was supported in part by NSF grant: CCF-1451574.
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