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Abstract. It is known that individuals in social networks tend to exhibit
homophily (a.k.a. assortative mixing) in their social ties, which implies
that they prefer bonding with others of their own kind. But what are
the reasons for this phenomenon? Is it that such relations are more con-
venient and easier to maintain? Or are there also some more tangible
benefits to be gained from this collective behaviour?

The current work takes a game-theoretic perspective on this phenom-
enon, and studies the conditions under which different assortative mixing
strategies lead to equilibrium in an evolving social network. We focus on
a biased preferential attachment model where the strategy of each group
(e.g., political or social minority) determines the level of bias of its mem-
bers toward other group members and non-members. Our first result is
that if the utility function that the group attempts to maximize is the
degree centrality of the group, interpreted as the sum of degrees of the
group members in the network, then the only strategy achieving Nash
equilibrium is a perfect homophily, which implies that cooperation with
other groups is harmful to this utility function. A second, and perhaps
more surprising, result is that if a reward for inter-group cooperation is
added to the utility function (e.g., externally enforced by an authority
as a regulation), then there are only two possible equilibria, namely, per-
fect homophily or perfect heterophily, and it is possible to characterize
their feasibility spaces. Interestingly, these results hold regardless of the
minority-majority ratio in the population.

We believe that these results, as well as the game-theoretic perspec-
tive presented herein, may contribute to a better understanding of the
forces that shape the groups and communities of our society.

Keywords: Social networks · Homophily · Game theory

1 Introduction

Homophily (lit. “love of the same”) [15], also known as assortative mixing [17], is
a prevalent and well documented phenomenon in social networks [16]; in making
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their social ties, people often prefer to connect with other individuals of simi-
lar characteristics, such as nationality, race, gender, age, religion, education or
profession.

Homophily has many important consequences, both on the structure of the
social network (e.g., the formation of communities) and on the behaviors and
opportunities of participants in it, for example on the welfare of individuals [12]
and on the diffusion patterns of information in the network [13]. It is therefore
interesting to explore the reasons for this phenomenon. Clearly, one natural
reason is that relationship with similar individuals may be more convenient and
easier to maintain. But are there also some more tangible benefits to be gained
from this collective behaviour of sub-populations in the network?

To better understand homophily, we take a different perspective on this phe-
nomenon and study it through a strategic, game-theoretic prism. We investi-
gate the conditions under which different assortative (and disassortative) mixing
strategies lead to equilibrium in an evolving social network game.

To model the network evolution, we use a variant of the classical preferen-
tial attachment model [4], which incorporates a heterogeneous population and
assortative mixing patterns for the sub-populations. This model, known as biased
preferential attachment (BPA) [3], maintains the “rich get richer” property, but
additionally enables different mixing patterns (including perfect homophily and
heterophily) between sub-populations, by using rejection sampling.

In this paper, we modify this model by turning it into a game. Each sub-
population is represented as a player who can choose its mixing pattern as a
strategy. The utility function (or payoff) of a player is a result of its popula-
tion’s (expected) properties in the BPA model. A strategy profile (describing the
strategies of both players) attains a Nash equilibrium for the game if no player
can do better by unilaterally changing its own strategy.

Obviously, the result of the game depends on the players’ utility functions. In
the current study we take an initial step and study two natural utility functions.
In the first, we consider the payoff to be the total power of the group, that is,
the sum of degrees of all group members. In this case we prove that there is a
unique stable Nash equilibrium which is the perfect homophily profile, namely,
cooperation with other groups is harmful to this utility function. We stress that
while there are other strategy profiles, like the unbiased profile, that guarantee
the same total power to the groups, those profiles do not yield Nash equilibrium.

Since perfect homophily results in complete segregation of the sub-
populations, we consider a second utility function based on a linear combina-
tion between the total power of the group and the number of cross-population
links (i.e., the size of the population cut). In particular, the utility is taken to
be γ times the total power of the group plus 1 − γ times the population cut
size, for some weight factor 0 ≤ γ ≤ 1. Such a utility can be viewed as a rule
(or a law) imposed by a regulator to encourage cooperation between the two
sub-populations. At a first glance, this utility seems to lead to different Nash
equilibria for different γ values. Somewhat surprisingly, we show that only two
possible equilibria may emerge. For γ > 1/2, the perfect homophily profile is
the unique Nash equilibrium, and for γ < 1/2, the heterophily profile is the
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(a) πH - homophily (b) πT - heterophily (c) πU - unbiased

Fig. 1. Examples of the Biased Preferential Attachment (BPA) model with various
parameter settings. All examples depict a 200-vertex bi-populated network generated
by our BPA model starting from a single edge connecting a blue and a red vertex and
30% red nodes (with vertex size proportional to its degree). (Color figure online)

unique Nash equilibrium. For γ = 1/2, both profiles yield a Nash equilibrium,
but only the perfect homophily yields a stable equilibrium. (Note, by the way,
that all our results are independent of the ratio r between the sizes of the two
sub-populations.)

What may we learn from these results? A first, quite intuitive, lesson is that if
the payoff includes benefits for heterophilic edges, then the game can move away
from the perfect homophily equilibrium. But, within the natural utility function
we study, if the game moves away from the homophily equilibrium, then it must
reach a perfect heterophily equilibrium. Both of these equilibria may appear to
be too “radical” from a social capital perspective, which may find it desirable to
maintain some balance in-between the two extremes, i.e., preserve the internal
structure of both sub-populations as well as form significant cross-population
links between the two sub-populations. This leaves us with some interesting
follow-up research directions: what ‘mechanism design’ rules can a regulator
employ in order to have a more fine-grained control on the equilibrium? what
happens in a system with more than two sub-populations? how do the equilibria
behave? We leave these questions for future work; we believe that taking the
game theoretic perspective on evolving social network models for heterogenous
populations is an important tool in understanding homophily, as shown in this
initial model.

Due to space limitations, we provide only an outline of our proofs. The inter-
ested reader is referred to [2] for details.

2 Related Work

Game theory provides a natural framework for modeling selfish interests and the
networks they generate [1,18]. While many studies (see [11] for a comprehensive
survey) focus on local network formation games, others (e.g., [7]) model the
players as making global structural decisions. In this paper we define a game
that features a mixture of both local and global characteristics. This situation is
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close to cooperative games [5], where all the nodes of the same group have the
same payment. However, the key idea of cooperative games is to choose which
coalitions to form, whereas here the partition into groups is predefined.

In this context, one should distinguish between network formation games
[11,14,18] and evolving network games (e.g., [6]). The former involve a fixed set
of nodes, with the connections between them changing over time. In contrast, in
the evolving network model used herein, the nodes and edges are both dynamic,
and new nodes join the network as it evolves over time.

Based on the assumption that people have tendency to copy the decisions
of other people, we suggest a network construction process that follows the well
known preferential attachment model [4] with an additional phase to incorporate
the mixing parameter [3]. However, related studies in the economics literature
examine different procedures to model the social network formation. The studies
of [8,10] assume that individuals are randomly paired with other members of the
population and then match assortatively. Another model, presented at [6], sug-
gests two-phase attachments. The nodes first choose their neighbors with a bias
towards their own type and then make an unbiased choice of neighbors from among
the neighbors of their biased neighbors. While the models of [10,14] and others
assume that a connecting edge between a pair of nodes is fixed by using bilateral
agreement, in our model the matching choice is somewhat ambiguous. The rejec-
tion of a proposed connection can be interpreted as either decided by one of the
parties unilaterally or accepted by a bilateral agreement.

One of the main themes of this paper is studying the homophily phenom-
enon and its influence on minority-majority groups. McPherson et al. [16] give an
overview of research on homophily and survey a variety of properties and how they
lead to particular patterns in bonding. While some studies (e.g., [3,8,9]) model
homophily as ranging over a spectrum between perfect homophily and unbiased
society, we have followed [6,10], which also allow disassortative matching.

Currarini, Jackson and Pin [8] examine friendship patterns in a representa-
tive sample of U.S. high schools and build a model of friendship formation based
on empirical data. They report that all groups are biased towards same-type
friendship relative to demographics, but different homophilic patterns emerge
as a function of the group size; while homophily is essentially absent for groups
that comprise very small or very large fractions of their school, it is significant
for groups that comprise a middle-ranged fraction. In [10] it is also claimed that
the majority group has greater tendency to homophily. In contrast, we have
presented independence between the size of the group and the mixing pattern.
Namely, the majority-minority parameter r does not influence the attained equi-
libria. This inconsistency can be explained by the different construction of the
network ([8,10] assume random matching with biased agreement as mentioned
above), or perhaps by the simplicity of our model and the fact that it involves
only two groups.
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3 Network and Game Model

Our network model is an extension of the bi-populated biased preferential attach-
ment (BPA) model [3]. We use this model as the basis to an evolving heteroge-
neous network game. We start by describing the network model.

3.1 Biased Preferential Attachment Model

The biased preferential attachment model1 (BPA) [3] is a bi-populated prefer-
ential attachment model obtained by applying the classical preferential attach-
ment model [4] to a bi-populated minority-majority network augmented with
homophily.

Definition 1 (BPA Model, BPA(n, r, π)). The model describes a bi-
populated random evolving network with red and blue vertices, where n is the
total number of nodes, r is the arrival rate of the red vertices and π is the mixing
matrix. Denote the social network at time t by Gt = (Vt, Et), where Vt and Et,
respectively, are the sets of vertices and edges in the network at time t, and
let dt(v) denote the degree of vertex v at time t. The process starts with an
arbitrary initial bi-populated (red-blue) connected network G0 with n0 vertices
and m0 edges. For simplicity we hereafter assume that G0 consists of one blue
and one red vertex connected by an edge, but this assumption can be removed.
This initial network evolves in n time steps as follows. In every time step t, a
new vertex v enters the network. The arrival rate of the red nodes is denoted
by 0 < r < 1, i.e., the new vertex v is red with probability r and blue with
probability 1 − r.

In the first stage, v selects a tentative neighbor u at random by preferential
attachment, i.e., with probability proportional to u’s degree at time t,

P[u is chosen] = dt(u)/
∑

w∈Vt

dt(w).

The second stage employs a 2 × 2 stochastic mixing matrix, π, composed of the
stochastic homophily vectors of each player, πR, πB, i.e.,

π =
(

πR

πB

)
=

(
ρR 1 − ρR

1 − ρB ρB

)
.

Letting x ∈ {R, B} be v’s color, the edge (v, u) is inserted into the graph with
probability ρx when u’s color is also x. If the colors differ, then the edge is
inserted with probability 1 − ρx. If the edge is rejected (i.e., is not inserted into
the graph), then the two-stage procedure is restarted. This process is repeated
until some edge {v, u} has been inserted. Thus in each time step, one new vertex
and one new edge are added to the existing graph.

1 In fact, here we extend the model of [3] to allow heterophily.
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Note that the mixing matrix π describes the degree of segregation (incor-
porated by using rejection sampling) of the system. In particular, using the

perfect homophily matrix πH =
(
HR
HB

)
=

(
1 0
0 1

)
, all added edges connect ver-

tex pairs of the same color. At the other extreme, using the perfect heterophily

matrix πT =
(
TR
TB

)
=

(
0 1
1 0

)
, all added edges connect vertex pairs with differ-

ent color. Similarly, using the unbiased strategy matrix πU =
(
UR
UB

)
=

(
.5 .5
.5 .5

)
,

edges are connected independently of the node colors. For intermediate values
0 < ρR, ρB < 1, the players show a tendency to favor one kind of interaction
over another. When ρR, ρB > 0.5, the players tend to be homophilic, and when
ρR, ρB < 0.5, the players tend to be heterophilic. Figure 1 presents three exam-
ples of parameter settings for the BPA model on a 200-vertex bi-populated social
network with r = 0.3 (30% red nodes), using πH, πT and πU.

3.2 Evolving Heterogeneous Network Games

We now define the evolving heterogeneous EH (t, r, π, γ) network game (EH game,
for short) between the two sub-populations. The game is played between two
players, the red player R and the blue player B. (Note that we occasionally
use R and B to denote either the color, the corresponding set of nodes, or the
corresponding player. The exact meaning will be clear from the context.)

Assume r and G0 are given to the players. Each player X ∈ {R, B} can now
choose its strategy vector as a mixing vector πX in the mixing matrix π. Then the
network evolves according the biased preferential attachment model BPA(t, r, π).

Let nt(R) and nt(B), respectively, denote the number of red and blue nodes
at time t > 0, where nt = nt(R) + nt(B) = n0 + t. Denote by dt(R) (respectively,
dt(B)) the sum of degrees of the red (resp., blue) vertices present in the system
at time t ≥ 0. Altogether, the number of edges in the network at time t is
mt = m0 + t, where dt(R) + dt(B) = 2mt.

Let C(Gt) denote the cut of the graph Gt defined by the red-blue partition of
Vt, i.e., the set of edges that have one endpoint in R and the other in B. Formally,

C(Gt) = {(u, v) ∈ Et | u ∈ R, v ∈ B} .

Let φ(Gt) = |C(Gt)| denote the size of the cut.
In our game, the payoff of each player is a combination of two quantities:

the total power of its sub-population (namely, its expected sum of degrees),
and the expected cut size φ(G). Observe that these quantities pull in opposite
directions, hence they are balanced using a parameter 0 ≤ γ ≤ 1 that will serve
as a weighting factor for the utility function of the game. The parameter γ can
be viewed as set by a regulator to enforce cooperation between sub-populations.
Formally, the payoffs (utilities) of the players R and B at time t are
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Uγ
t (R) = γ

dt(R)
dt

+ (1 − γ)
φt

2mt
=

1
dt

(
γdt(R) + (1 − γ)φt

)
,

Uγ
t (B) = γ

dt(B)
dt

+ (1 − γ)
φt

2mt
=

1
dt

(
γdt(B) + (1 − γ)φt

)
.

A strategy profile π is a Nash equilibrium for the game EH (t, r, π, γ) if no
player X ∈ {R, B} can do better by unilaterally changing its own strategy πX. A
Nash equilibrium for the game EH (t, r, π, γ) is stable if a small change in π for
one player leads to a situation where two conditions hold: (i) the player who did
not change has no better strategy in the new circumstance, and (ii) the player
who did change is now playing with a strictly worse strategy. If both conditions
are met, then the player who changed its π will return immediately to the Nash
equilibrium, hence the equilibrium is stable. If condition (i) does not hold (but
condition (ii) does), then the equilibrium is unstable.

4 Degree Maximization Game

Before studying the behavior of the general evolving heterogeneous network
game, let us consider the solution of the game in the basic case where γ = 1 for
every t, i.e., each player’s utility depends only on the expected sum of degrees.

An urn process. The biased preferential attachment BPA(n, r, π) process can
also be interpreted as a Polya’s urn process, where each new edge added to the
graph corresponds to two new balls added to the urn, one for each endpoint,
and the balls are colored by the color of the corresponding vertices. In this
interpretation, a time step of the original evolving network process corresponds
to the arrival of a new ball x (which is red with probability r and blue with
probability 1 − r), and in the ensuing procedure, we choose an existing ball
y from the urn uniformly at random; now, if x is of the same (respectively,
different) color x ∈ R, B as y, then with probability ρx (resp., 1 − ρx) we add to
the urn both x and a second copy of y (corresponding to the two endpoints of
the added edge), and with probability 1 − ρx (resp., ρx) we reject the choice of
y and repeat the experiment, i.e., choose another existing ball y′ from the urn
uniformly at random. This is repeated until the choice of y is not rejected. Hence
the arrival of each new ball x results in the addition of exactly two new balls to
the urn, namely, x and a copy of some existing ball y.

The key observation is that to analyze the expected fraction of the red balls
in the urn at time t, there is no need to keep track of the degrees of individual
vertices in the corresponding process of evolving network; the sum of degrees of
all red vertices, dt(R), is exactly the number of red balls in the urn. Noting that
exactly two balls join the system in each time step, we have

dt(R) + dt(B) = dt = 2t + n0 = 2(t + 1).

Note that while dt(R) and dt(B) are random variables, dt is not.

Convergence of expectations. Let αt = dt(R)/dt be a random variable denot-
ing the fraction of red balls in the system at time t. Given the mixing matrix π,
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we claim that the process will converge to a ratio of α red balls in the system
(as a function of π). More formally, we claim that, regardless of the starting
condition, there exists a limit α = limt→∞ E[αt].

Lemma 1. E [αt+1 | αt] = αt +
F (αt) − αt

t + 2
, where

F (x) =
1
2

(
1 +

ρB(−1 + r)(−1 + α)
−α + ρB(−1 + 2α)

+
rρRα

1 − α + ρR(−1 + 2α)

)
.

Lemma 2. The function F (x) has the following properties:

1. F (x) is monotonically increasing.
2. F (x) has exactly one fixed point, α ∈ [0, 1].
3. The image of the unit interval by F (x) is contained in the unit interval:

F ([0, 1]) =
[

r
2 , 1+r

2

] ⊂ [0, 1].
4. If x < α then x < F (x) < α and if x > α then x > F (x) > α.

Assume w.l.o.g. that αt < α. By Lemma 2 αt < F (αt) < α, so by Lemma 1
αt < E [αt+1 | αt] < α. Taking expectations, we get that E[αt] < E[αt+1] <
E[α] = α. We have thus shown that the expected value of αt converges to the
fixed point α of F (x). We have thus established the following.

Theorem 1. Given the rate r of red nodes and the mixing matrix π, for any
initial graph, as t tends to infinity, the expected fraction of red balls, E[αt],
converges to the unique real α ∈ (0, 1) satisfying the equation F (α) = α, or

2α = 1 +
ρB(−1 + r)(−1 + α)
−α + ρB(−1 + 2α)

+
rρRα

1 − α + ρR(−1 + 2α)
.

Hence the limit α is the solution of the cubic equation

(2 − 4ρB − 4ρR + 8ρBρR)α3 + (−3 + 7ρB + ρBr + 4ρR − 10ρBρR + rρR − 4ρBrρR)α2

+ (1 − 3ρB − 2ρBr − ρR + 3ρBρR + 4ρBrρR)α + ρBr − ρBrρR = 0.

Note that this limit is independent of the initial values d0 and α0 of the system.

Existence of a Nash Equilibrium. Having shown that for any given strategy
profile π the expected fraction of red node degrees converges to α, we examine
the influence of the different strategies on the utility functions.

Lemma 3. The limit α and E[αt] are monotone in the mixing matrix entries,
i.e., both increase with increasing ρR and decrease with increasing ρB.

Given the utility functions U1
t (R) = dt(R) and U1

t (B) = dt(B), each player can
choose its row in the mixing matrix π. By Theorem 1 we get that U1

t→∞(R) = dtα
and U1

t→∞(B) = dt(1 − α). Lemma 3 implies that the red and blue players
maximize their utility by increasing ρR and ρB, respectively. Hence, the homophily
strategy profile πH is strictly dominant for both players. The same applies for
t < ∞.

Theorem 2. The homophily strategy profile πH is a unique Nash equilibrium for
the game EH (t, r, π, γ = 1).
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5 Utilitiy Maximization Game

The evolving heterogeneous network game EH (t, r, π, γ) for a bi-populated net-
work consists of two contrasting ingredients, the expected sum of degrees d(·)
and the cut size φ(G). The following theorem expresses the impact of these forces
on the system as a function of the weighting factor γ.

Theorem 3. Consider the evolving network game EH (t, r, π, γ) for 0 < r < 1.

1. For γ > 1/2, the homophily strategy profile πH is a unique Nash equilibrium.
2. For γ < 1/2, the heterophily strategy profile πT is a unique Nash equilibrium.
3. For γ = 1/2, the only two Nash equilibria are πH and πT. The homophily

strategy profile πH is a stable Nash equilibrium, while the heterophily strategy
profile πT is an unstable Nash equilibrium.

Sketch of proof. Given that the new vertex at time t + 1 is blue, the probability
PBB that it attaches to a blue vertex satisfies

PBB(αt) = (1 − αt)ρB + αtρBPBB(αt) + (1 − αt)ρBPBB(αt),

hence PBB(αt) = ρB−ρBαt

ρB+αt−2ρBαt
. Similarly, when the new vertex at time t+1 is red,

the probability that it attaches to a red vertex is PRR(αt) = ρRαt

1−αt+ρR(1−2αt)
.

Let Nt(x) and Mt(x) be random variables denoting, respectively, the number of
new red balls and cut edges at time t. We have dt(R) = d0(R) +

∑t
i=1 Nt(αi−1)

and φ(Gt) = φ(G0) +
∑t

i=1 Mi(αi−1). Define the potential function of the red
player, denoted ΔR, as the expected increment of its utility at step t. Then

ΔR = E
[
Uγ

t+1(R) − Uγ
t (R) | α

]
= E [γNt+1(α) + (1 − γ)Mt+1(α)]

= γ(1 − (1 − r)PBB(α) + rPRR(α)) + (1 − γ)(1 − ((1 − r)PBB(α) + rPRR(α)))
= 1 − (1 − r)PBB(α) + r(2γ − 1)PRR(α).

Similar considerations imply that the potential function of the blue player is

ΔB = 1 − rPRR(α) + (1 − r)(2γ − 1)PBB(α).

The theorem follows by inspecting the value of the potential functions ΔR and
ΔB for every γ and using Lemma 3 (for the monotonicity of PRR(α) and PBB(α)
with the entries of the mixing matrix). ��

6 Discussion

This work investigates the assortative mixing phenomenon using a game theory
perspective. Given some predefined rules related to the probability of connect-
ing to other node, each player is allowed to determine its strategy in order to
maximize its payoff. First we used a utility function that captures degree cen-
trality, and showed that the expected sum of degrees and its limit are monoton-
ically increasing with the homophily tendency. This directly implies that the
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homophily strategy is the unique Nash equilibrium. In this context, it will be
interesting to use different centrality measures (such as PageRank, betweenness,
etc.) and examine their influence on the equilibria. Next we enhanced the utility
function to give positive payoff for both the degree and the cut. The results we
have presented show a phase transition in the strategy as a function the weight
γ. A small fluctuation in γ might cause extreme changes in the preference of
the players, i.e., from perfect homophily to perfect heterophily (or vice versa);
the intermediate strategies are never in equilibrium. This result is independent
of the fraction of the sub-population size in the population. Generalizing the
model to more than two sub-populations or reformulating the utility function
may shape the strategy function differently.

An interesting outcome of the above is the possibility that setting a rule (or
a law) by a regulator to encourage cooperation between the two sub-populations
will play as a remedial strategy to achieve equal opportunities. This observation
is remarkable since, in contrast to the usual affirmative action approach, this
attitude does not discriminate any individual, but at the same time, it promises
a fair representation of the different sub-populations and even a way for breaking
the glass ceiling [3] that some minority sub-populations suffer from. We leave
this direction for further work.
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