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Abstract. We consider in this paper the Hawk-Dove game in which
each of infinitely many individuals, involved with pairwise encounters
with other individuals, can decide whether to act aggressively (Hawk) or
peacefully (Dove). Each individual is characterized by its strength. The
strength distribution among the population is assumed to be fixed and
not to vary in time. If both individuals involved in an interaction are
Hawks, there will be a fight, the result of which will be determined by
the strength of each of the individuals involved. The larger the differ-
ence between the strength of the individuals is, the larger is the cost for
the weaker player involved in the fight. Our goal is to study the influ-
ence of the parameters (such as the strength level distribution) on the
equilibrium of the game. We show that for some parameters there exists
a threshold equilibrium policy while for other parameters there is no
equilibrium policy at all.

1 Introduction

Evolutionary games become a central tool for predicting and even design evolu-
tion in many field. The origin of evolutionary games come from biology where
it was introduced by [15] to model conflicts among animals. It differs from clas-
sical game theory by (i) its focusing on the evolution dynamics of the fraction
of members of the population that use a given strategy, and (2) in the notion
of Evolutionary Stable Strategy (ESS, [15]) which includes robustness against a
deviation of a whole (possibly small) fraction of the population who may wish to
deviate (This is in contrast with the standard Nash equilibrium concept that only
incorporates robustness against deviation of a single user). It became perhaps the
most important mathematical tool for describing and modeling evolution since
Darwin. Indeed, on the importance of the ESS for understanding the evolution
of species, Dawkins writes in his book “The Selfish Gene” [18]: “we may come
to look back on the invention of the ESS concept as one of the most important
advances in evolutionary theory since Darwin.” He further specifies: “Maynard
Smith’s concept of the ESS will enable us, for the first time, to see clearly how a
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collection of independent selfish entities can come to resemble a single organized
whole.” Recently, however, evolutionary game theory has become of increased
interest to social scientists [8]. In computer science, evolutionary game theory
is appearing, some examples of applications can be found in multiple access
protocols [16], multihoming [14] and resources competition in the Internet [20].

In this paper we focus on the classical evolutionary Hawk-Dove game which is
one of the most studied examples in evolutionary games. The Hawk-Dove game
is a model for determining the degree of aggressiveness in a society in which
each individual can decide on whether to be a Hawk or a Dove. There are many
pairwise interactions between individuals while competing over resources such
as food. While Hawkish behavior benefits an individual who meets a Dove while
contending over a resource, it has a cost since it is involved in more confrontations
Hawk-Hawk which are more violent and in which chances of getting wounded
are high. The objective of a game analysis is then to predict what fraction of
the population would be aggressive at equilibrium as a function of the system’s
parameters.

In this paper we assume that the choice between Dove and Hawk only deter-
mines whether or not there would be a confrontation between the individuals.
But the outcome of the conflict is determined by a parameter that is proper to
each of the involved individual, which we call strength. It could be related to
its size, or its weight. Each individual in a large population takes a decision on
whether to act aggressively (Hawk) or not (Dove) based on its own strength. It
is again involved in many pairwise encounters with other individuals randomly
selected from a large population. The decision to act aggressively or not is taken
without knowing what will be the strength of those individuals it would meet.

In evolutionary game literature, variants of the hawk-dove game exist. For
example, in [11] a dynamic version of the hawk dove game is proposed. In this
version, it is assumed that each player (animal) has a state that corresponds
to its level of energy reserves. A strategy of a player specifies which action to
take as a function of its state. Assuming that an animal must minimize its
probability of dying, the authors established a new ESS according to which
an animal plays a hawk if its energy reserves are below some critical value, and
plays dove otherwise. Furthermore, any single mutant that adopts other strategy
than the ESS would get a strictly lower fitness. In [19], the author considered a
heterogeneous population composed of two groups of hawks and doves that have
different fighting abilities and which are linked via migration. Assuming that
migration occurs at a much faster time scale than the game dynamics (hawk dove
game), the author studied the dynamics of the full population. Other interesting
extended versions of the Hawk-Dove game are proposed in [3–7,10,12,13].

Originated in biology, the hawk-dove game lends itself well to various net-
working problems such as power control or medium access control as well. In
[2,9], a semi-dynamic version of the hawk-dove game applied to power control
is introduced. In this game, the aggressive behavior stands for transmitting at
a high power level while the peaceful behavior is associated to transmitting at
a low power level. Each mobile station (player) has a state that corresponds to
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its energy level. The action used by a player determines its immediate fitness
and its future state. Moreover, it is assumed that a player can use only the
same strategy during its lifetime. The goal of a player is to maximize its overall
amount of data sent during its lifetime. The authors identified in this context
a paradox in which the fraction of a population choosing the peaceful behav-
ior at the evolutionarily stability decreases as the initial energy state of players
increases. In [1], the authors applied the hawk dove game to congestion control
where the aggressive behavior corresponds to using a high-speed TCP version
to be used over the Internet. Another application of the hawk-dove game in the
medium access control is considered in [17].

In this paper we allow the state space to be a continuum. After presenting
the model in the next section, we identify in Sect. 3 conditions for an equilibrium
with a threshold structure to exist, in which a individual behaves aggressively if
it is stronger than some threshold. We then search in Sect. 4 for other equilibria
and show that under some conditions, any equilibrium other than threshold does
not exist at all. This is due to the fact that the state space is infinite and has
thus not been observed in games with finite state spaces.

2 Model

We consider a Hawk and Dove game, in which individuals have pairwise inter-
actions over resources (food). Two individuals that adopt a Dove behavior split
the resource peacefully; we assume that the share of each individual depends
on the strength of the individual as follows. The stronger individual receives a
fraction α of the resource and the other one receives 1 − α of it, where α is a
constant between 0 and 1. If it meets a individual with an aggressive behavior
(Hawk) then the whole resource is taken by the aggressive individual so that the
Hawk gets one unit of fitness and the Dove none.

When two Hawks meet, there is a fight in which case the true identity deter-
mines the fitness of each player. We assume that the stronger individual receives
one unit of fitness whereas the weaker one’s utility is monotone increasing in
its strength. Let x (and y) be the strength levels of the stronger (resp. weaker)
individual. Then we assume that the fitness of the weaker individual is given by
−f(y, x − y) for some nonnegative f which is assumed to be decreasing in its
first argument and increasing in its second one. Each individual is encountered
with another individual chosen uniformly at random. Assume that the strength
level in the population is distributed according to probability density function
θ(x). This means the probability that any individual encounters a individual of
strength between x to x+dx is θ(x)dx for small dx. When stronger individual
has strength x and weaker individual has strength y(< x), then payoff matrices
are as follows (Tables 1 and 2).
The probability that a individual of strength x meets another individual of
strength exactly equal to x is zero. Hence the payoffs in that case do not affect
the utility of the individuals.

We define P (as a function of x) to be the strategy of the individuals. P (x) is
the probability of playing Hawk when at strength level x (and hence probability



A Multitype Hawk and Dove Game 19

Table 1. Payoff for player
with strength x(> y)

H D

H 1 1

D 0 α

Table 2. Payoff for player
with strength y(< x)

H D

H −f(x, y − x) 1

D 0 1 − α

that it plays Dove is 1 − P (x)). In general different individuals can play dif-
ferent strategies. But when a particular individual is encountered by a random
individual, only thing that affects its utility is the probability with which it is
encountered by a individual with strength y and strategy Hawk and individual
with strength y and strategy Dove. If h(y) is the probability with which the
individual is encountered by a individual with strength y and playing Hawk,
we can equivalently assume that all individuals with strength y are playing
Hawk with probability h(y)

θ(y) . Hence forward we shall assume all the individuals
in the environment play the same strategy. Define the utility of the individual
as U(P ′, x, P ), this is the expected utility that a individual (of strength x) gets
when it uses strategy P ′ and the rest of the population uses strategy P . It is
given by

U(P ′, x, P ) = P ′(x)U(H,x, P ) + (1 − P ′(x)) U(D,x, P )

where H is pure strategy of playing Hawk and D is pure strategy of playing
Dove. We have,

U(H,x, P ) =
∫ x

0

θ(y) dy+
∫ ∞

x

θ(y)P (y)(−f(x, y−x)) dy+
∫ ∞

x

θ(y)(1−P (y)) dy

U(D,x, P ) = α

∫ x

0

θ(y)(1 − P (y)) dy + (1 − α)
∫ ∞

x

θ(y)(1 − P (y)) dy

3 Threshold Strategy

Before studying the existence of Nash equilibrium and ESS, let us define the
threshold strategy based on the strength level.

Definition 1. We define a threshold strategy P by

P (x) =

⎧⎨
⎩

0 if x < L
1 if x > L

any value ∈ [0, 1] if x = L
(1)
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We call L as threshold value of this threshold strategy, and denote the threshold
strategy as PL.

Theorem 1. If f is a bounded function, then there exists a threshold strategy
(for α = 1/2), such that if it is used by the individual and the population, it is
Nash equilibrium. If the function f is strictly increasing in x, then this threshold
strategy is also an ESS.

Proof. Part 1 - Existence of threshold strategy which is Nash equilibrium.
We find the conditions on threshold value L so that its threshold strength

is Nash equilibrium. Let PL be a Nash equilibrium. This U(PL, x, PL) ≥
U(P, x, PL) for every strategy P , and every strength level x. We have

PL(x)U(H,x, PL) + (1−PL(x))U(D,x, PL) ≥ P (x)U(H,x, PL) + (1−P (x))U(D,x, PL) (2)

Case 1 : x > L

For x > L, we have PL(x) = 1, to satisfy (2), we must have
U(PL, x, PL) ≥ U(P, x, PL)
U(H,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)
(1 − P (x)) U(H,x, PL) ≥ (1 − P (x)) U(D,x, PL)

Above inequality has to be satisfied by all strategies P , so it is necessary and
sufficient that
U(H,x, PL) ≥ U(D,x, PL)∫ x

0
θ(y) dy +

∫ ∞
x

θ(y)(−f(x, y − x)) dy ≥ 1
2

∫ L

0
θ(y) dy∫ x

0
θ(y) dy ≥ 1

2

∫ L

0
θ(y) +

∫ ∞
x

θ(y)f(x, y − x) dy

LHS of the above statement is increasing in x and as f is decreasing in x, RHS
is decreasing in x. So, it is necessary and sufficient that inequality is satisfied for
x = L. ∫ L

0

θ(y) dy ≥ 1
2

∫ L

0

θ(y) +
∫ ∞

L

θ(y)f(L, y − L) dy

1
2

∫ L

0

θ(y) dy ≥
∫ ∞

L

θ(y)f(L, y − L) dy (3)

Case 2 : x < L

For x < L, we have PL(x) = 0, to satisfy (2), we must have
U(PL, x, PL) ≥ U(P, x, PL)
U(D,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)
P (x) U(D,x, PL) ≥ P (x) U(H,x, PL)

It is necessary and sufficient to have U(D,x, PL) ≥ U(H,x, PL)∫ L

0
θ(y) dy +

∫ ∞
L

θ(y)(−f(x, y − x)) dy ≤ 1
2

∫ L

0
θ(y) dy
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1
2

∫ L

0
θ(y) dy ≤ ∫ ∞

L
θ(y)f(x, y − x) dy

LHS of the above statement is constant in x and as f is decreasing in x, RHS is
decreasing in x. So, it is necessary and sufficient that inequality is satisfied for
x = L.∫ L

0
θ(y) dy ≤ (1/2)

∫ L

0
θ(y) +

∫ ∞
L

θ(y)f(L, y − L) dy

1
2

∫ L

0

θ(y) dy ≤
∫ ∞

L

θ(y)f(L, y − L) dy (4)

(3) and (4) imply

1
2

∫ L

0

θ(y) dy =
∫ ∞

L

θ(y)f(L, y − L) dy (5)

Above equation also tells us that U(H,L, PL) = U(D,L, PL), so a player with
strength L is indifferent in playing Hawk and Dove, so PL(L) can take any value
between 0 and 1 and still PL will be a Nash equilibrium. So, it is sufficient for
L to satisfy the above equation for PL to be Nash equilibrium.

LHS of (5) is increasing in L and RHS of (5) is decreasing in L. At L = 0, LHS
takes value 0 and as L tends to ∞, LHS tends to 1/2. If RHS is bounded, as f
is a non negative, not identically zero bounded function, RHS takes a positive
value at L = 0 and tends to 0 as L tends to ∞. Hence, (5) has unique solution.
So, we have a threshold strategy which is Nash equilibrium whenever the RHS
is bounded.

Part 2 -
For PL to be ESS, for all strategies P other than PL and for all x except maybe
on a set of measure zero, at least one of the following must hold,

(1) U(PL, x, PL) > U(P, x, PL)
(2) U(PL, x, PL) = U(P, x, PL) and U(PL, x, P ) > U(P, x, P )

Let PL be the threshold strategy we get in Part 1 which is Nash equilibrium.
Then we have, U(H,L, PL) = U(D,L, PL)

Also, as for x ≥ L, U(D,x, PL) = 1
2

∫ L

0
θ(y) dy and

U(H,x, PL) =
∫ x

0
θ(y) dy +

∫ ∞
x

θ(y)P (y)(−f(x, y − x)) dy , we have

U(H,x, PL) > U(H,L, PL) for x > L (Strict inequality because f is strictly
increasing)

So for x > L, we have

U(H,x, PL) > U(H,L, PL) = U(D,L, PL) = U(D,x, PL), which implies

U(PL, x, PL) > U(P, x, PL)

Similarly, we can also show the same for x < L. This proves that PL is also an
ESS as L is set of measure zero.
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Threshold equilibrium for general α: We now try to find if there exists a
threshold Nash equilibrium strategy for general α. We assume the probability
density function θ is differentiable and decreasing. We assume f is bounded and
decreasing in x. It is also reasonable to assume that f is concave in the variable
x (meaning δ2

δ2xf(x, y − x) ≤ 0 for all x).

Case 1 : x ≥ L

In this case, PL(x) = 1. For PL to be Nash equilibrium, we must have for any
other strategy P and for all x ≥ L, U(PL, x, PL) ≥ U(P, x, PL)

⇔ U(H,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)

⇔ (1 − P (x)) U(H,x, PL) ≥ (1 − P (x)) U(D,x, PL)

⇔ U(H,x, PL) ≥ U(D,x, PL)

⇔ ∫ ∞
x

θ(y)(−f(x, y − x)) dy +
∫ x

0
θ(y) dy ≥ α

∫ L

0
θ(y) dy

⇔ ∫ x

0
θ(y) dy ≥ α

∫ L

0
θ(y) +

∫ ∞
x

θ(y)f(x, y − x) dy

LHS of the above statement is increasing in x and as f is decreasing in x, RHS
is decreasing in x. So, it is sufficient that equation is satisfied for x = L.

∫ L

0

θ(y) dy ≥ α

∫ L

0

θ(y) +
∫ ∞

L

θ(y)f(L, y − L) dy

(1 − α)
∫ L

0

θ(y) dy ≥
∫ ∞

L

θ(y)f(L, y − L) dy (6)

Case 2 : x < L

In this case, PL(x) = 0. For PL to be Nash equilibrium, we must have for any
other strategy P and for all x ≤ L,

U(PL, x, PL) ≥ U(P, x, PL)

⇔ U(D,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)

⇔ P (x) U(D,x, PL) ≥ P (x) U(H,x, PL)

⇔ U(D,x, PL) ≥ U(H,x, PL)

⇔ α
∫ x

0
θ(y) dy + (1 − α)

∫ L

x
θ(y) dy ≥ ∫ ∞

L
θ(y)(−f(x, y − x)) dy +

∫ L

0
θ(y) dy

⇔ α

∫ L

0

θ(y) dy ≤ (2α − 1)
∫ x

0

θ(y) dy +
∫ ∞

L

θ(y)f(x, y − x) dy (7)
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Let F (x) denote the RHS of (7). LHS is independent of x, so (7) holds for x < L
if and only if F (x) satisfies the inequality LHS ≤ min 0≤x≤L {F (x)}.

F (x) = (2α − 1)
∫ x

0
θ(y) +

∫ ∞
L

θ(y)f(x, y − x) dy

As θ is assumed differentiable, F is twice differentiable.

F ′(x) = (2α − 1)θ(x) +
∫ ∞

L
θ(y) δ

δxf(x, y − x) dy

F ′′(x) = (2α − 1)θ′(x) +
∫ ∞

L
θ(y) δ2

δ2xf(x, y − x) dy

As f is concave in x and θ is decreasing, F ′′(x) ≤ 0 ∀ x ≤ L

So, F takes minimum value either at 0 or L.

For this case, it is necessary and sufficient that (7) is satisfied by x = 0 and
x = L. These with (6) are the necessary and sufficient conditions for L to
Nash equilibrium threshold strategy. So, PL is Nash equilibrium if and only if
(1) α

∫ L

0
θ(y) dy = F (L) and (2) α

∫ L

0
θ(y) dy ≤ F (0).

So there exists a threshold strength L such that PL is Nash equilibrium if and
only if there exists L satisfying both above equations, which when rearranged
can be written as follows

(1 − α)
∫ L

0

θ(y) dy =
∫ ∞

L

θ(y)f(L, y − L) dy (8)

α ≤ 1
2

+

∫ ∞
L

θ(y)[f(0, y) − f(L, y − L)] dy

2
∫ L

0
θ(y) dy

(9)

As we can see, this proves that for α = 1, (8) cannot be satisfied, hence there is
no solution. For α ≤ 1

2 , there always exists a Nash equilibria threshold strength.
For 1

2 < α < 1, existence of a Nash equilibrium threshold strategy depends upon
whether the functions θ and f satisfy (9).

4 Other Equilibria

We would now try to find if there are other equlibria. For this section we shall
assume the function f to be only dependent on the difference between the indi-
vidual’s and the opponent’s strength levels (earlier f was dependent on the
difference in strength levels and individual’s strength level). We also assume
α = 1/2. Note that if at some strength level x, if the individual receives more
utility by playing Hawk (Dove) then it will play Hawk (Dove) with full proba-
bility in the equilibrium.

Hence, U(H,x, P ) > U(D,x, P ) ⇒ P (x) = 1 for P to be equilibrium strategy.
Similarly, U(H,x, P ) < U(D,x, P ) ⇒ P (x) = 0

Also, P (x) = 1 ⇒ U(H,x, P ) ≥ U(D,x, P ),
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P (x) = 0 ⇒ U(H,x, P ) ≤ U(D,x, P ),

0 < P (x) < 1 ⇒ U(H,x, P ) = U(D,x, P ) for P to be equilibrium strategy

Lemma: Any equilibrium strategy is monotone. Formally for an equilibrium
strategy P , for some x1, if U(H,x1, P ) > U(D,x1, P ), then P (x) = 1 ∀x ≥ x1,
for some x2, if U(H,x2, P ) < U(D,x2, P ), then P (x) = 0 ∀x ≤ x2.

Proof:

U(H,x, P ) =
∫ x

0
θ(y) dy +

∫ ∞
x

θ(y)P (y)(−f(y − x)) dy +
∫ ∞

x
θ(y)(1 − P (y)) dy

After simplifying, we get U(H,x, P ) = 1 − ∫ ∞
x

θ(y)P (y)(1 + f(y − x)) dy

f is increasing in y −x, so f is decreasing in x. So the quantity
∫ ∞

x
θ(y)P (y)(1+

f(y − x)) dy is decreasing in x. So, U(H,x, P ) is increasing in x.

U(D,x, P ) = (1/2)
∫ ∞
0

θ(y)(1 − P (y)) dy is independent of x. So, the quantity
U(H,x, P ) − U(D,x, P ) is increasing in x.

U(H,x1, P ) > U(D,x1, P ) → U(H,x1, P ) − U(D,x1, P ) > 0

For x ≥ x1, U(H,x, P ) − U(D,x, P ) ≥ U(H,x1, P ) − U(D,x1, P ) > 0 →
P (x) = 1.

By similar reasoning, second part also holds. This completes the proof of the
lemma.

Let AP = {x |U(H,x, P ) > U(D,x, P )}, BP = {x |U(H,x, P ) = U(D,x, P )},
CP = {x |U(H,x, P ) < U(D,x, P )}.

Because of our lemma in this section, every element in BP is greater than every
element in AP and less than every element in CP .

Let x1 = inf(BP ), x2 = sup(BP ). Clearly, x1 ≤ x2

So, we have P (x) = 0 ∀x < x1 and P (x) = 1 ∀x > x2

If x1 = x2, P (x) can take non trivial value (value greater than 0 and less than 1)
at the most one value (It may take nontrivial value at x1(= x2)). So the strategy
is a threshold strategy.

Now assume x1 < x2. For x1 < x < x2, 0 < P (x) < 1. So, we have
U(H,x, P ) = U(D,x, P ) on the whole interval (x1, x2). So, we can differenti-
ate and equate the two sides.

For x1 < x < x2, the utilities are
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U(H,x, P ) =
∫ x

0
θ(y) dy +

∫ x2

x
θ(y)(−f(y−x))P (y) dy +

∫ x2

x
θ(y)(1−P (y)) dy +∫ ∞

x2
θ(y)(−f(y − x)) dy

U(D,x, P ) = (1/2)
∫ x1

0
θ(y) dy + (1/2)

∫ x2

x1
θ(y)(1 − P (y)) dy

U(H,x, P ) = U(D,x, P )

⇔ ∫ x

0
θ(y) dy +

∫ x2

x
θ(y)(−f(y − x))P (y) dy +

∫ x2

x
θ(y)(1 − P (y)) dy +∫ ∞

x2
θ(y)(−f(y − x)) dy = (1/2)

∫ x1

0
θ(y) dy + (1/2)

∫ x2

x1
θ(y)(1 − P (y)) dy

⇔ ∫ x2

0
θ(y) dy − ∫ x2

x
θ(y)(1 + f(y − x))P (y) dy +

∫ ∞
x2

θ(y)(−f(y − x)) dy =
(1/2)

∫ x1

0
θ(y) dy + (1/2)

∫ x2

x1
θ(y)(1 − P (y)) dy

We have U(H,x, P ) = U(D,x, P ) on the whole interval (x1, x2). So, we can
differentiate (with respect to x) and equate the two sides. We get,

−(
∫ x2

x
θ(y) δ

δxf(y−x)P (y) dy)+θ(x)(1+f(0))P (x)−(
∫ ∞

x2
θ(y) δ

δxf(y−x) dy ) = 0

θ(x)(1 + f(0))P (x) =
∫ x2

x
θ(y) δ

δxf(y − x)P (y) dy + +
∫ ∞

x2
θ(y) δ

δxf(y − x) dy

Since f is increasing in (y −x), it is decreasing in x. So, the quantity δ
δxf(y −x)

is negative. Both the terms in the RHS are nonpositive, so RHS is nonpositive.
But LHS is nonnegative, so for this equation to satisfy we must have P (x) =
0 ∀x1 < x < x2. Contradiction, since x such that x1 < x < x2 belongs to BP ,
and hence P (x) > 0.

So, for x1 < x2, we do not have any solution. So, there does not exist any other
equilibrium strategy other than threshold strategy.

5 Price of Stability

In this section, we study the inefficiency caused in the objective function by
imposing the condition of Nash equilibrium for certain functions f . Objective
function here for us is the average utility of all the players. This inefficiency is
quantified by price of Stability. Formally it is defined as

Price of Stability (PoS) = maxP∈PeAU(P )
maxP∈PAU(P )

where AU(P ) is average utility when the whole population plays strategy P , P
is set of all strategies for the population, Pe is set of all equilibrium strategies
for the population. Thus, PoS is the ratio of best you can get using the Nash
equilibrium strategies and the overall best you can get. Note, PoS is always less
than or equal to 1. We shall find PoS for some density functions θ and cost func-
tions f . Apart from previous conditions on θ and f , we would generally put the
restrictions on f that f(x, 0) = 0 and fix a constant, say 1

2 , we would generally
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want for fixed x, f(x, y−x) tend to infinity or a constant at least 1
2 as y−x tend

to infinity. We shall now calculate PoS for some examples with the restrictions
defined.

Example 1. We consider the case where α = 1
2 . Let θ(y) = μe−μy and

f(x, y − x) = 1 − e−μ(y−x).

The value of threshold strength L can be calculated by solving the equation

1
2

∫ L

0
θ(y) dy =

∫ ∞
L

θ(y)f(L, y − L) dy

Solving, we get e−μL = 1
2 or L = 1

μ ln(2).

Thus, the utility for player with strength x < L is 1
2

∫ L

0
μe−μy dy =

1
2 (1 − e−μL) = 1

4

For x > L it is
∫ x

0
μe−μy dy − ∫ ∞

x
μ−μy (1 − e−μ(y−x)) dy = 1 − 3

2 e−μx

Average utility AU =
∫ L

0

μe−μx(
1
4
) dx +

∫ ∞

L

μe−μx(1 − 3
2

e−μx) dx

=
1
4

(1 − e−μL) + e−μL − (
3
2
) (

1
2
) e−2μL

=
1
4

(1 − 1
2
) +

1
2

− (
3
2
) (

1
2
)

1
4

=
7
16

As this is unique Nash equilibrium, it is best Nash equilibrium. It can be clearly
seen that when strategies are not restricted to Nash equilibrium, the average
payoff is maximized when all players play Dove, the average payoff in this case
is 1

2 . So, PoS for this game 7
8 .

Example 2. Consider the same α and θ, but f(x, y − x) = 1 − e−cμ(y−x) for
some constant > 0. By same calculations, we can check that

e−μL = c+1
3c+1 and AU = 1

2 − c(c+1)
2(3c+1)2 .

We cannot have c = 0 (in that case, f(x, y–x) = 0 which is not allowed), but any
c > 0 is allowed. As c ↓ 0, AU → 1

2 and so PoS → 1. So, for any small ε > 0,
we can create a game by choosing proper value of c such that PoS of this game
is 1 − ε.
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Example 3. Same α and θ, f(x, y − x) = ekμ(y−x) where k ≥ 0 is a constant.
We can find threshold strength only for k < 1. So, for k ≥ 1, there is no Nash
equilibrium strategy, so by definition, PoS is zero. For k < 1, we get e−μL = 1−k

3−k

and AU = 1
2 − 1−k

2(3−k)2 . As k ↑ 1, AU → 1
2 and so PoS → 1. So, again for any

small ε > 0, we can create a game by choosing proper value of k such that PoS
of this game is 1 − ε.
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