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Abstract. In this paper, we study a vertically differentiated duopoly
market, where competitors (mobile service providers) offer mobile sub-
scriptions to customers, who diversify in their preferences regarding price
and quality. We consider a two-stage game where the players first select
the quality and then begin a competitive process for the price or quan-
tity, which is widely known as Bertrand or Cournot game, respectively.
To capture the service provider strategy, we first introduce variable costs
to improve the quality, which are linear in quality per a subscription,
and then derive the market-related metrics of interest for the tractable
uniform distribution of the customer’s taste parameter. Further relax-
ing this strong assumption, we provide with a numerical procedure that
helps characterize an arbitrary taste distribution as well as an arbitrary
cost function. Finally, selected numerical examples report on the com-
parison between the uniform and the truncated exponential distribution,
thus accentuating the importance of choosing an appropriate customer
taste model.

1 Introduction

The telecommunications industry has already entered a new phase of its evolu-
tion, where the focus has shifted from the conventional multimedia transmission
to the ubiquitous connectivity and massive traffic volumes driven by growing
human demand for data as well as supported by the emerging innovations, such
as the Internet of Things, wearables, and more far-fetched autonomous vehi-
cles [1]. On this market that crossed the 100% penetration mark, competition of
mobile service providers for increased market share and retention of customers
becomes a vital part of their strategy.

One of the key marketing strategies for competitors to seek profitable niches
is product differentiation and pricing [2]. In particular, horizontal differentiation
refers to immeasurable distinctions in virtually identical products, such as in
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design or color, which are not sufficient for the mobile service provider (SP) to
attract new customers, who are willing to acquire a better level of service. In
contrast to that, vertical market differentiation is objectively measurable and
based on diverse quality levels of the products [3]. Here, customers are sensitive
with respect to the relation between the quality and the price levels, and may
have diverse preferences regarding it [4].

Generally, the market and pricing models have already attracted significant
attention of the wireless community across a wide range of various problems,
from market entrance decisions for mobile SPs [5] and competition over spec-
trum [6] to specific studies of social welfare in case when SPs exploit unlicensed
spectrum [7]. However, to the best of our knowledge no prior work on vertical
differentiation of mobile service markets has been contributed so far. In this
paper, we study a duopoly model where mobile SPs first determine the specifi-
cation of their offered services and then decide on the prices or the quantities of
services they offer according to the Bertrand or Cournot competition models [§]
(the initial market entry [9] is assumed to have been completed).

We consider both the price and the quantity competition as they lead to
dissimilar equilibrium points, while there is still no consensus in past literature
as to which type of competition should be preferred. We thus analyze both
game models in order to reveal the dependence of the corresponding results on
the optimal choice of the SP strategies, namely, whether SPs eventually offer
a homogeneous product (as shown by the Cournot game) or two differentiated
products (as illustrated by the Bertrand game). Since both situations may occur
in the real market, one model cannot be preferred over another upfront.

Further, in modeling the mobile service markets an important role belongs
to characterizing the costs of offering improved service quality. The majority of
existing studies as in [9-11] assume zero or fixed quality improvement cost, as
well as adopt diminishing [12] or quadratic [13] formulations. This work assumes
linear costs of quality improvement per unit of product as this can be tackled
easily while being close to what the SPs may experience in practice.

As an indicator of customer preferences, we adopt the standard utility func-
tion [14], where the willingness of a customer to pay for a better quality ser-
vice is represented by a random taste parameter [14]. While most of the game-
theoretical references study the formulations by example of analytically tractable
but arguably unrealistic uniform distribution of the taste parameter from “poor”
to “rich”, we in this work offer guidance on how to handle an arbitrary taste dis-
tribution and an arbitrary cost function.

The remainder of this paper is organized as follows. In Sect. 2, we outline
our system model as well as describe the two-stage game played to divide the
market and set the optimal price or quantity (in Bertrand or Cournot game,
respectively). Our contributions appear in Sects. 3 and 4, where, correspond-
ingly, we provide analytical calculations for the conventional tractable example
under the linear cost assumption and then detail our flexible numerical procedure
to cope with an arbitrary formulation. Finally, we provide numerical comparison
of the two considered options based on representative examples.
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2 System Model

In this work, we study a vertically differentiated mobile service market under the
simplifying assumption of two operating SPs (service providers). In our formula-
tion, the SP ¢ may be characterized by a pair “price-quality” (p;, s;) and offer an
unconstrained number of mobile subscriptions, each of which guaranteeing the
announced mobile service quality s; for the price p;. Thus offered subscriptions
(e.g., SIM-cards) may be purchased by a potentially large number of consumers,
hereinafter named customers. Based on their preferences, customers may select
only one SP or else refrain from buying anything.

We emphasize here that the products on a vertically differentiated market (in
our case, subscriptions) may differ in both their quality and price. Moreover, the
customers are not identical in their preferences due to diverse taste or budget
restrictions, which results in varying willingness to pay for the offer [4,15].

2.1 Characterization of the Customers

Utility Function of Customers. For differentiated markets, it is typically
assumed that all of the customers agree on ranking the mobile service offers (sub-
scriptions) in the order of quality preference according to some utility function
based on a taste parameter [13]. The taste parameter 6 reflects the customer’s
preference i.e., the more a customer agrees to pay for a better quality service —
the higher the parameter 6 becomes. In our study, we adopt the following utility
function of 0 [15], given the price p; and the quality s; offered by the SP i:

U(0,si,pi) =0-s; — pi, (1)

where, s; = s(T;) is an increasing quality function of data volume or rate T;
guaranteed by the SP. The function s(7;) is typically non-linear and often rep-
resented in literature by a logarithmic dependence, but may also be replaced by
another, more appropriate choice.

Strategy of Customers. All of the customers are assumed to be rational i.e.,
the strategy of any customer is to maximize its utility U(6,s,p) by choosing
exactly one subscription of the SP i characterized by a pair (p;, s;) or, alterna-
tively, refraining from buying anything at all. We note that zero utility value
U(0,s;,p;) < 0 is equivalent to not purchasing the product 7, and the case
U0, si,pi) =U(0, s;,p;) yields customer’s indifference to buying product ¢ or j.

Distribution of Customers. In order to be able to apply the Cournot compe-
tition model, we further assume that the considered market is not covered i.e.,
there always are customers who never participate [11,15]. Therefore, 6 should be
distributed over the interval [0, 0,.x], where .« corresponds to customers able
to pay the most for a better quality. We assume that within this interval 6 is dis-
tributed according to a certain probability density hy(6). Below, we compare two
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distinct distributions hg(6): the conventional and analytically tractable uniform
distribution as well as the more realistic truncated exponential distribution, for
which a numerical solution may be produced.

Demand for SPs
ﬁ P2-P,

0o % SrS1y 0.
D, SP 2 subscriptions [SP 1 subscriptions |

Distribution of the taste parameter

h(@) - truncated exponential

Fig. 1. Illustration of the target market structure.

2.2 Characterization of the SPs

Demand of the SPs. Without loss of generality, we reorder our SPs such that
$1 > S9. Due to the assumption on the rationality of customers, prices should
also be rearranged in the non-decreasing order p; > po. For the fixed price and
quality levels, we may obtain the following points of indifference for a tagged
customer [13]:

— point of indifference to buying or not buying the service of the SP 2 is denoted
by the parameter fg 2 = £2 (follows from U(6, s2,p2) = 0),
— point of indifference to buylng the service of the SP 2 or of the SP 1

corresponds to the parameter 6571 = Is’i_’;j (follows from U(0,s1,p1) =
U(aa 527p2))'
The demand of the SPs may then be established as D1 (s f 0 =2 h(0)df and

Do(s;p) = [,) 92,1 h(0)df, where h(6) is the probability den51ty functlon (PDF) of
the taste parameter 0.

Profit of the SPs. When making their decisions, the SPs abide by the principle
of maximizing their profit, which is determined by the financial flow from the
subscribed customers and depends on the structure of the costs. We assume that
linear costs are incurred when improving the claimed quality s; per user, so that
the SP would be ready to support the respective quality of service (QoS) level
for its subscribed customers. Hence, the total costs depend both on the number
of served customers and on the selected quality level. These costs may reflect,
for example, the initial investments into a fixed-term spectrum lease and/or the
amounts of spectrum that could be resold (as e.g., in [16] or [17]).

Further, our profit function may be written as IT;(s, p) = D;(s,p) (p; — vs;),
where v is the quality cost coefficient. The latter may be roughly estimated
from the value of the spectrum license costs to support the announced QoS,
normalized by unit time as well as the total number of customers in the region
of interest. We note that our assumption on the linear costs is relaxed in Sect. 4
and replaced by another suitable function.
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2.3 Two-Stage Differentiated Market Game

In this work, we model both alternatives: the price and the quantity competition,
which are known as the Bertrand and Cournot competition models, correspond-
ingly. We focus on a differentiated market game with the following two phases:

1. In the first phase, both SPs select the quality level s; (equivalent to e.g., a
data rate package with the announced throughput). Importantly, at this stage
the SPs are aware of each other, but make their decisions sequentially.

2. Second, given the fixed quality level s; the SPs compete in price or, alterna-
tively, in quantity. More specifically, in the Bertrand game the SPs decide on
the prices p;,7 = 1,2 that are announced to the customers purchasing their
subscriptions. In contrast to that, in the Cournot game the SPs decide on
the quantity, which in our modeling translates into the number of subscribed
customers or, equivalently, sold subscriptions.

Further, we aim at determining the Nash equilibrium of our game and to do so
we apply the principle of backward induction. Accordingly, we begin by finding
an equilibrium for the second phase (price/quantity competition for the fixed
levels of s;) and then obtain the optimal values of s; which are selected in the
first phase.

3 Conventional Example: Uniform Taste Distribution

In this section, we consider a tractable example of the customer taste distribution

h(6), namely, a uniform distribution hy (0) = ﬁ over the said interval [0, Oy ax]
and thus the expressions for the demand may be rewritten as:
Di(8;p) = 57— (Omax — 021), Da(s;p) = 52— (021 — 052). (2)

In what follows, we consider the Bertrand price competition and the Cournot
quantity competition models separately for both options.

3.1 Bertrand Price Competition for the Uniform Distribution

In the Bertrand game, the SP selects its own price p; in order to maximize the
profit II;(s;p) = D;(s;p) (p; — vs;) for the selected quality function values s;.
By differentiating II; over p;, one may calculate the optimal prices (can be
verified for v = 0 by [13]) for the fixed levels of quality, while the solution is
readily obtained as follows:

* _ o 20max(s1—s2)+v(2s1+s2) * _ o Omax(s1—s2)+3s1v
pi(s) =1 T s P5(s) = spTmEe s (3)

It can be easily demonstrated that the latter is a unique point of maximum
for 0 < s < s1, which is achieved during the price competition if all of the
participants maximize their profits. The solution (3) represents a result of long-
term price adjustment.
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At the next step of our backward induction, we consider the first phase of the
game, when the SPs select the quality s;. Each of them maximizes the function
II;(s) over the only varying argument s;, where:

II,(s) = 45%M, IIy(s) = slsgw. (4)

Omax(4s1—52)2 Omax(4s1—52)?

The first-order condition of maximum for these two independent optimization
problems may be formulated as follows:

451 (0’"3"_”)2 (4512_331 32+2822) _ 812 (481 —Ts2) (exnax_'U)2 —
Omax (451 —52)° =0, Omax (451 —52)° =0. (5)
Denoting 2t L as x, we may then locate the maximum points for both SPs. We note

that due to the absence of roots for the first equation and the fact that BH L > (,
the maximum is located at the border s] = Smax, while the optlmal quahty

55 = Smax&, where {=4/7 (the second-order condition of maximum 8652 <0
2 ls7,s3

could be verified easily). The latter corresponds to the rule of 4/7 [11].

Theorem 1. The obtained solution for the Bertrand game is unique and repre-
sents the Nash equilibrium.

Proof. The proof is fairly straightforward and is based on demonstrating that
the following holds:

II;(sy,s3) > II;(s1,s5), for any s1 < s7, (6)
and II;(s7, s3) = II;(s],s2),  for any sp # s3,

which is based on the fact that the sought points are the points of maximum for
the respective functions. Uniqueness of the sought point follows from uniqueness
of p*(s) and the solution (s}, s3).

Substituting the sought point (Smax, &Smax) into the price, demand, and profit
functions, we obtain the key indicators at the equilibrium point. Then, we addi-
tionally calculate the consumer surplus by characterizing the integral benefit of
all customers as a difference between the maximum price that they could have
paid for the quality s; (i.e., 8s;) and what they actually spend (p;):

O max 01,2 5
CS= [ (051 —p)giadb+ [ (053 —po)glodf = Tomaxllmeccr)” (7
0112 ‘92 ,2

3.2 Cournot Quantity Competition for the Uniform Distribution

While in the Bertrand game the price p; is controlled by the SP ¢ and the share
of connected customers is then determined through the demand function, in the
Cournot game the SPs control the quantity (i.e., the number of subscriptions)
and then the prices are derived through the inverted system of demand functions:

pl(s; D) - _emax(Dlsl — 851+ D252)7 (8)
p2(8; D) = —Oaxs2(D1 + Dy — 1).
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Substituting the above into the expression for the SP profit IT; = D;(p; — vs;),
we may establish the quantity response functions that maximize the profit for
the fixed qualities s; and ss:

Di(s) = Z1=52)Umax—v) = D (g) = 510max—0)

emax(431_52) ’ Gmax(481—82) °
After substituting these functions into (8), we obtain the prices set by the SPs:

— o 20max31—0maxS2+281v — oo Omaxs1+3s1v—s0v
p1 - 81 (451752) ) p2 - 82 (481782) ?

and, correspondingly, characterize the resulting profit:

251=52)2 (Omax—)* 152 (Omax—v)*
I (s) = 2Ot lemc e I (s) = g2, )
In the second phase of the backward induction, we derive the optimal level of
qualities that maximize the profit (9) by finding the stationary points of the
following equations:

OIT1(s) _ (Omax—v)?(251—52)(852 —25152+52) AM2(s) _ (Omax—v)%s2(4s1+52) (10)
ds1 Omax (451 —52)3 ) dsy Omax (451 —52)3 ’

Denoting #! as z, we may conclude that there exists no solution = > 1 for (10).

Since both 6167;55) and 81;225) > 0, the point of maximum is located at the right
border of the interval for s, that is, s] = Smax and $5 = Smax. Therefore, we
have established a candidate solution for the Cournot game and can formulate
a theorem similar to the one before.

Theorem 2. The obtained solution for the Cournot game is unique and repre-
sents the Nash equilibrium.

Proof. The proof is easy to produce similarly to that of the above Theorem for
the Bertrand game.

Since the Cournot prices and qualities are equivalent, two SPs divide the cor-
responding market in equal proportions, if we assume that there is no weighted
preference towards a certain brand. Hence, the consumer surplus in this case
may be derived as:

emax

CS= | (051 — p1)h(0)df = ZomexlOmaxmr)®. (11)

Omax
01,2

4 Arbitrary Taste Distribution and Cost Function

In this section, we contribute an algorithm that allows for establishing an equilib-
rium point for an arbitrary taste distribution and cost function. As a particular
example, we refer to the truncated exponential distribution:

>\€7>\9 — A0

hU(e) — m,e 6 [anmax]a HU(Q) == L 9 E [079max]- (12)

1—e—*0max
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The use of the exponential shape follows from [18], where the authors ana-
lyze a real mobile service market by polling the consumers and processing the
results. Further, we truncate the exponential distribution by 6.« to provide a
better correspondence with the parameter of the uniform distribution. Hence,
the corresponding expressions for the demand may be rewritten as:

Apa _)\P1=P2

Di(s;p) = Co (e—Aiiiig _ efem-dx/\) ., Da(s;p) = Co (e_ s e 51752> ,

where C = 1_9,% is a constant introduced for brevity. We build our numer-
ical comparison later on in Sect.5 on the example of the truncated exponential
distribution, which we believe to better represent the properties of the target
market. However, below we formulate the essential steps of our proposed proce-
dure in a general form as well as introduce an arbitrary cost function.

4.1 Bertrand Price Competition for an Arbitrary Distribution

The profit function in its general form is defined as II; = D;p; — D;f.(s;),
where f.(s;) is the cost per a subscription represented by the twice differentiable
function of quality s;. In this general case, we therefore have:

M(s:p) = (1- H (2=2)) (o1 — fo(s1)),

y(s;p) = (H (2=22) = H (2)) (02 = fuls2)), "

where H (z) is the cumulative distribution function (CDF) of the taste parame-
ter and H (Omax) = 1. After differentiating both expressions separately by the
corresponding quality variable, we obtain a condition for further optimization:

Ol (s;p) _ 1 — H(p17p2) _ h(pl*m) p1—fe(s1)

Op1 §1—82 81—S2 s1—s2 ' (14)
Ola(sip) _ pr(piz=p2\ _ pr(p2) _ p( L=z p2—fe(s2) B P2 p2—fe(s2)
Op2 S1—82 S2 $1—82 $1—82 S2 S2 ’
We note that an analytical solution of the system (anéiiﬁm = O) may
i i=1,2

not always be produced for complex distribution shapes of f.(s;). In order to
follow the steps described previously in Sect. 3, for an arbitrary distribution we
may apply a numerical procedure to solve the system of non-linear equations
(14) for any fixed point s, 0 < so < s7. If the second-order condition of the local
maximum holds, the obtained solution p*(s) is set as an output of the function
FindOptimalPrices( s1, s2 ), which corresponds to the second phase of our game
(see Algorithm 1 below).

Continuing the search of the optimal solution, we consider again the second
phase (the quality competition) and maximize the profit IT;(s1, s2) by varying
s;. Importantly, the functions IT;(s1, $2) are numerical and produced by the pro-
posed function FindOptimalPrices(s1,s2). The optimization can be conducted
via explicit search, but the following theorem simplifies the needed calculations:
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Theorem 3. Mazimum of the profit function IIi(s1,82) by s1 € (0, Smax] for
the SP that makes its decision the first is always located at the point smax, which
means that for any new SP the mazimum quality yields the highest profit.

Proof. The proof is omitted here due to the space limitations.

Employing this result, it only remains to maximize the profit of another SP
I15(s1,82) by so € (0, 1], which is a simple one-dimensional optimization that
always has a solution. The entire procedure is briefly summarized in Algorithm 1.
The sought variables (s}, s5;p7, ps) correspond to the Nash equilibrium, where
no player could change its strategy (that is, price and quality for the SPs and SP
choice for the customers) without decreasing its profit. Based on the obtained
equilibrium, we may easily estimate the corresponding market shares D}, the
equilibrium profit IT}, and the consumer surplus C'S as provided in Sect. 5.

7

4.2 Cournot Quantity Competition for an Arbitrary Distribution

In order to characterize the Cournot quantity competition for an arbitrary taste
distribution and cost function, we follow the steps similar to those in Sect. 3. In
particular, we write down the expression for the SPs demands:

Di(sip) = 1—H (B=22), Dy(sip) = H (2222) —m (22),  (15)

where H () is the CDF of the taste parameter. From the first equation, we may
establish p; (D) = F (1 — D1) (81 — s2) + pa, where I = H~! is the function
inverse to the CDF. Substituting it into the second equation and calculating po,
we may obtain the following:

pl(D) :F(].—Dl) (81—82)+p2, pQ(D) :F(l—DQ—Dl)SQ (16)

We substitute this produced expression for price into the profit function
II;(s; D) = D;(p;(D) — f.(s;)). By analogy with Subsect. 4.1, we find the optimal
prices after differentiating the profit by the demand D; and then solving the

system (%Dsim = 0)1‘71 ) as:

s

OISD)— pr (D)~ fels1) — BE5°2, OHHSB— by (Do) — fe(s2) — 52
(17)

where h(0) is the given PDF. We note that the system (17) is equivalent to (14)
for the Bertrand competition. Assuming that the function FindOptimalQuanti-
ties(s1, S2) returns the solution of (17) and then replacing prices with qualities
D in Algorithm 1, we arrive at the final equilibrium (s}, s3; Dy, D3) and may
calculate all of the respective metrics.

Even though existence and uniqueness of the Nash equilibrium constitute
an open question for different classes of distributions, in case of our truncated
exponential example we can formulate the following Theorem.
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Theorem 4. For the truncated exponential distribution, there exists a unique
Nash equilibrium for both the Bertrand and the Cournot game, so that the
Bertrand competition results in product differentiation, while equilibrium quality
for the Cournot competition is given by (Smax, Smax)" -

Proof. We leave this proof out of scope of this paper.

Importantly, cooperative games for either price or quantity competition yield
different solutions e.g., product differentiation in the Cournot game.

Algorithm 1. Algorithm based on the Bertrand price competition

ST = Smax

s5 = MaximizeProfit2(s])

p* = FindOptimalPrices(s1, s2)

function MAXIMIZEPROFIT2(sT) > Maximize profit of the SP 2 by s2
return s5 = argmax,, Profit i(s7, s2)

function PROFIT i(s1, s2) > Profit of the SP based on the optimal prices
p* = FindOptimalPrices(s1, s2)
return I7;(s1, s2;p")

function FINDOPTIMALPRICES(s1,s2) > Prices maximizing the profit for fixed s
return p*: solution of the system (14)

—_

5 Numerical Results and Conclusion

In total, we analyze four scenarios: Bertrand and Cournot competition for both
the conventional and the realistic distribution each. Even though our approach
is suitable for any cost function, for the sake of comparison this section considers
the same linear costs for all of the cases. Minding a multitude of possible choices,
below we only provide several representative examples for comparison.

We remind that for a particular distribution we quantify the following para-
meters in our model: the maximum quality Smax (set by default to 100), the
cost coefficient v (0.1), and the “richest” customer .5 (6.6). In Fig. 2a—c, we
illustrate the evolution of our market for varying sy... As it is demonstrated
in Fig. 2a, the equilibrium quality for both the uniform (UD) and the exponen-
tial (ED) distribution (with A = 5) behaves similarly and confirms an identical
choice for the Cournot game as well as a clear product differentiation for the
Bertrand game. Importantly, we note that the latter results in the same quality
for both taste distributions h(6).

! We remind that if s} = s} then p} = p3, and the active customers with the positive
utility are indifferent to choosing either of the SPs. In this case, the demand is
equally shared between the SPs and leads to equal market indicators for them.
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Fig. 2. Evolution of equilibrium indicators for maximum quality smax: (a) equilibrium
quality for both distributions, (b, c¢) equilibrium price and quality for UD and ED.

Further, Fig.2b, c highlight the difference in prices and profits of the SPs.
Intuitively, on a market where the majority of customers are “poor” (ED) the
equilibrium prices as well as the profits appear to be much lower. The Cournot
competition results in prices that are generally higher than those in the Bertrand
competition, but for the ED market this difference diminishes together with the
degree of price differentiation between the SPs.

; Cournot competition

s Bertrand competition

; Cournot competition

4 Bertrand competition

Market share

No subscription No subscription No subscription No subscription

0.05 0.1

0.1
Cost coefficient, v

0
0.1 b 0 0 0.05

0
0
Cost coefficient, v

0.05 0.1 0.05

Fig. 3. Evolution of market shares vs. cost coefficient v: Bertrand and Cournot game
for (a) UD and (b) ED.

Then, we investigate the impact of costs on the total demand of the SP 1,
the SP 2, as well as the share of the market that is not covered. In Fig. 3a, b, we
observe the volume of the market that belongs to either of these three groups.
While the “wealthier” UD market is less sensitive to changes, on the ED market
an increase in costs entails a rise of the equilibrium price as well as a dramatic
reduction in the market shares of SPs. Customer churn eventually leads to a
significant decrease in the SP profits.

Finally, we analyze all four scenarios in question by varying 6.y, which
determines the “richest” customer on the market. As for the ED, the market
shares stabilize with the growing range of taste, whereas for the UD the market
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Fig. 4. Market evolution for variable restricting parameter Omax: (a, b) consumer sur-
plus for UD and ED, and (c) market shares.

broadens significantly by covering more and more customers (see Fig. 4c, where
dotted lines correspond to the ED market). Further, in Fig. 4a, b for the UD and
the ED, respectively, we may observe the total consumer surplus and the separate
components for customers of the SP 1 and the SP 2. The relative differences
are rather marginal and suggest that the Cournot game is more beneficial for
the market than the Bertrand game. However, the absolute values indicate a
considerable difference between the UD and the ED in terms of the resultant
benefits.

In summary, this paper considered both the price and the quantity competi-
tion in a vertically differentiated market. In particular, we analyzed a tractable
example with linear costs of quality improvement and proposed a numerical pro-
cedure to relax the restrictive assumptions. In contrast to most past studies, we
not only evaluated the mobile service market under more realistic assumptions
on the customer taste distribution, but also provided a detailed comparison of
the key market indicators. While demonstrating similar general behavior, the two
considered distributions — the uniform and the truncated exponential — indicate
a dramatic difference in the resulting market sensitivity to the changes. The
latter confirms that the choice of appropriate customer taste distribution is a
crucial factor in analyzing a competitive market, while the general market trends
could be understood from simpler assumptions.

References

1. Deloitte Global: Telecommunications industry outlook 2017, US (2017)

2. Liu, Q., Zhang, D.: Dynamic pricing competition with strategic customers under
vertical product differentiation. Manag. Sci. 59(1), 84-101 (2013)

3. Gabszewicz, J.J., Thisse, J.-F.: Price competition, quality and income disparities.
J. Econ. Theor. 20(3), 340-359 (1979)

4. Lancaster, K.: The economics of product variety: a survey. Mark. Sci. 9(3), 189-206
(1990)

5. Ren, S., Park, J., Van Der Schaar, M.: Entry and spectrum sharing scheme selection
in femtocell communications markets. IEEE/ACM Trans. Netw. 21(1), 218-232
(2013)



10.

11.

12.

13.

14.

15.

16.

17.

18.

Comparing Customer Taste Distributions 153

Niyato, D., Hossain, E.: Dynamics of network selection in heterogeneous wireless
networks: an evolutionary game approach. IEEE Trans. Veh. Technol. 58(4), 2008—
2017 (2009)

Nguyen, T., Zhou, H., Berry, R.A., Honig, M.L., Vohra, R.: The cost of free spec-
trum. Oper. Res. 64(6), 1217-1229 (2016)

Bonanno, G.: Vertical differentiation with Cournot competition. Econ. Notes 15(2),
68-91 (1986)

Shaked, A., Sutton, J.: Relaxing price competition through product differentiation.
Rev. Econ. Stud. 3-13 (1982)

Donnenfeld, S., Weber, S.: Limit qualities and entry deterrence. RAND J. Econ.
113-130 (1995)

Choi, C.J., Shin, H.S.: A comment on a model of vertical product differentiation.
J. Ind. Econ. 229-231 (1992)

Shaked, A., Sutton, J.: Natural oligopolies. Econometrica J. Econ. Soc. 1469-1483
(1983)

Motta, M.: Endogenous quality choice: price vs. quantity competition. J. Ind. Econ.
113-131 (1993)

Lehmann-Grube, U.: Strategic choice of quality when quality is costly: the persis-
tence of the high-quality advantage. RAND J. Econ. 372-384 (1997)

Tirole, J.: The Theory of Industrial Organization. MIT press, Cambridge (1988)
Bennis, M., Lara, J., Tolli, A.: Non-cooperative operators in a game-theoretic
framework. In: Proceedings of the International Symposium on Personal, Indoor
and Mobile Radio Communications. IEEE (2008)

Niyato, D., Hossain, E.: Competitive pricing for spectrum sharing in cognitive radio
networks: dynamic game, inefficiency of Nash equilibrium, and collusion. IEEE J.
Sel. Areas Commun. 26(1), 192-202 (2008)

Gladkova, M.A., Zenkevich, N.A., Sorokina, A.A.: Method of integrated service
quality evaluation and choice and its realization on the market of mobile operations
of Saint-Petersburg. Vestnik of Saint Petersburg University. Management Series,
no. 3 (2011)



	Comparing Customer Taste Distributions in Vertically Differentiated Mobile Service Markets
	1 Introduction
	2 System Model
	2.1 Characterization of the Customers
	2.2 Characterization of the SPs
	2.3 Two-Stage Differentiated Market Game

	3 Conventional Example: Uniform Taste Distribution
	3.1 Bertrand Price Competition for the Uniform Distribution
	3.2 Cournot Quantity Competition for the Uniform Distribution

	4 Arbitrary Taste Distribution and Cost Function
	4.1 Bertrand Price Competition for an Arbitrary Distribution
	4.2 Cournot Quantity Competition for an Arbitrary Distribution

	5 Numerical Results and Conclusion
	References


