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Abstract. Due to the intermittent production of renewable energy and
the time-varying power demand, microgrids (MGs) can exchange energy
with each other to enhance their operational performance and reduce
their dependence on power plants. In this paper, we investigate the
energy trading game in smart grids, in which each MG chooses its energy
trading strategy with its connected MGs and power plants according
to the energy generation model, the current battery level, the energy
demand, and the energy trading history. The Nash equilibria of this game
are provided, revealing the conditions under which the MGs can satisfy
their energy demands by using local renewable energy generations. In a
dynamic version of the game, a Q-learning based strategy is proposed for
an MG to obtain the optimal energy trading strategy with other MGs and
the energy plants without being aware of the future energy consumption
model and the renewable generation of other MGs in the trading market.
We apply the estimated renewable energy generation model of the MG
and design a hotbooting technique to exploit the energy trading experi-
ences in similar scenarios to initialize the quality values in the learning
process to accelerate the convergence speed. The proposed hotbooting
Q-learning based energy trading scheme significantly reduces the total
energy that the MGs in the smart grid purchase from the power plant
and improves the utility of the MG.

Keywords: Energy trading · Game theory · Reinforcement learning ·
Smart grids

1 Introduction

As important entities in smart grids, microgrids (MGs) are small-scale power
supply networks that consist of renewable energy generators, such as wind tur-
bines and solar panels, local electrical consumers and energy storage devices [1].
Each MG is aware of the local energy supply and the demand profiles of other
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MGs and the nearby power plant such as the energy selling prices using wireless
networks [2]. Therefore, microgrids with extra energy can sell energy to other
microgrids with insufficient energy to reduce their dependence on the energy
generated by the power plants with fossil fuel and save the long-distant energy
transmission loss.

Game theory is an important tool to study the energy trading in smart
grids [3–8]. For example, the energy demand of consumers and the response
of utility companies are formulated as a Stackelberg game in [4], yielding a
reserve power management scheme to decide energy trading price. The energy
trading of a power facility controller to buy energy from the power plant and
multiple residential users was studied in [6], which yields a charging-discharging
strategy to minimize the total energy purchase cost. The energy exchange game
for MGs formulated in [7] analyzes the subjectivity decision of end-users in the
energy exchange with prospect theory. The energy exchange game developed in
[8] addresses energy cheating with the indirect reciprocity principle.

However, to our best knowledge, the game theoretical study on energy trad-
ing among multiple MGs with heterogeneous and autonomous operators and
renewable energy supply are still open issues. In this paper, we formulate the
energy exchange interactions among interconnected MGs and the power plant as
an energy trading game, in which each MG chooses the amount of energy to sell
to or purchase from the connected MGs and the power plants in the smart grid
based on its battery level, the energy generation model and the trading history.
The MGs negotiate with each other on the amount of trading energy according
to the time-varying renewable energy generation and power demand of the MGs.
The energy generation model such as [13] is incorporated in the energy trading
game to estimate the renewable energy generation. The Nash equilibrium (NE)
of this game is derived, disclosing the conditions that the MGs are motivated
to provide their extra renewable energy to other MGs and purchase less energy
from the power plants.

Reinforcement learning techniques, such as Q-learning can be used by smart
grids to manage the energy storage and generation. For example, a temporal
difference-learning based storage control scheme proposed in [9] for the residen-
tial users can minimize the electric bill without knowing the power conversion
efficiencies of the DC/AC converters. The Q-learning algorithm based hetero-
geneous storage control system with multiple battery types proposed in [10]
improves the system efficiency. In a two-layer Markov model based on reinforce-
ment learning investigated in [11], generators choose whether to participate in
the next days generation process in the power grid to improve both the day-ahead
and real-time reliability. However, these works focus on the energy storage and
generation rather than the energy trading among the MGs.

In this paper, a Q-learning based energy trading strategy is proposed for the
MG to derive the optimal policy via trial-and-errors without being aware of the
energy demand model and the storage level of other MGs in the dynamic game.
To accelerate the learning speed, we exploit the renewable energy generation
model in the learning process and design a hotbooting technique that applies
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the trading experiences in similar smart grid scenarios to initialize the quality
values of the Q-learning algorithm at the beginning of the game. Simulation
results show that the hotbooting Q-learning based energy trading scheme further
promotes the energy trading among the connected MGs in a smart grid, reduces
the reliance on the energy from the power plants, and significantly improves the
utility of the MGs.

The rest of this paper is organized as follows: The energy trading game is
formulated in Sect. 2, and the NE of the game is provided in Sect. 3. A hotbooting
Q-learning based energy trading strategy is proposed for the dynamic game in
Sect. 4. Simulation results are provided in Sect. 5, and conclusions are drawn in
Sect. 6.

2 Energy Trading Game

We consider an energy trading game consisting of N MGs that are connected
with each other and a power plant in the main grid via a substation. Each MG
is equipped with renewable power generators, active loads, electricity storage
devices, and the power transmission lines connecting with other MGs and the
power plant. A microgrid has energy supply from other microgirds, the power
plant, and local renewable energy generators based on wind, photovoltaic, bio-
mass, and tidal energy.

The renewable energy generation such as wind power is local-independent,
intermittent and time-varying. The amount of the energy generated by renew-
able power generators in MG i at time k denoted by g

(k)
i can be estimated via

the power generation history and the modeling method such as [13], yielding
an estimated amount of the generated power denoted by ĝ

(k)
i . For simplicity,

the estimation error regarding g
(k)
i is assumed to follow a uniform distribution,

given by

g
(k)
i − ĝi

(k) ∼ G · U(−1, 1), (1)

where G is the maximum estimation error.
In a smart grid, the energy trading interaction among the MGs can be for-

mulated as an energy trading game that consists of N players. The amount of
energy that MG i intends to sell to (or buy from) MG j before the bargaining
is denoted by x

(k)
ij , which is chosen by MG i based on the observed state of the

smart grid, such as its battery level, the energy trading prices, and its current
energy production, and the energy demand. The trading strategy of MG i at
time k is denoted by x

(k)
i = [x(k)

ij ]1≤j≤N ∈ X, where X is the feasible action set

of the MGs and x
(k)
ii is the amount of energy that MG i intends to trade with

the power plant. If x
(k)
ij > 0, MG i intends to sell its extra energy to MG j or

the power plant. If x
(k)
ij < 0, MG i aims to buy energy.

Note that sometimes two MGs intend to sell energy to each other at the
same time, i.e., x

(k)
ij x

(k)
ji > 0. This problem has to be addressed with the energy
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trading bargaining. The resulting actual trading strategy of MG i at time k is
denoted by y

(k)
i = [y(k)

ij ]1≤j≤N , where y
(k)
ii and y

(k)
ij denote the amounts of the

energy sold if positive by MG i to the power plant and MG j, respectively, or
the amount of the energy purchased from them if negative, with |y(k)

ij | ≤ C, in
which C is the maximum amount of energy exchange between two MGs. The
time index k is omitted, if no confusion incurs. Therefore, the actual amount of
trading energy between MG i and MG j after the bargaining is based on their
intention trading interactions and given by

yij =

⎧
⎪⎨

⎪⎩

−min(−xij , xji), if xij < 0, xji > 0
min(xij ,−xji), if xij > 0, xji < 0
0, o.w.

(2)

In this way, we can ensure that yij + yji = 0, ∀ i �= j. The amount of the energy
that MG i trades with the energy plant is given by

yii =
∑

1≤i�=j≤N

xij −
∑

1≤i�=j≤N

yij . (3)

Energy storage devices, such as batteries, can charge energy if the load in the
MG is low and discharge if the load is high. The battery level of MG i, denoted
by b

(k)
i , cannot exceed the storage capacity denoted by B, with 0 < b

(k)
i ≤ B.

The estimated amount of the local energy demand is denoted by d
(k)
i , with 0 ≤

d
(k)
i ≤ Di, where Di represents the maximum amount of local energy required

by MG i. The battery level of MG i depends on the amount of trading energy,
the local energy generation, and the energy demand at that time. For the smart
grid with N MGs, we have

b
(k)
i = b

(k−1)
i + g

(k)
i − d

(k)
i +

N∑

j=1

y
(k)
ij . (4)

The energy gain of MG i, denoted by Gi(b), is defined as the benefit that MG i
obtains from the battery level b, which is nondecreasing with b with G(0) = 0. As
the logarithmic function is widely used in economics for modeling the preference
ordering of users and for decision making [4], we assume that

Gi(b) = βi ln(1 + b), (5)

where the positive coefficient βi represents the ability that MG i satisfies the
energy demand of the users.

To encourage the energy exchange among MGs, the local market provides
a lower selling price for the trade between MGs denoted by ρ−(k) and a higher
buying price denoted by ρ+(k), compared with the prices offered by the power
plant which are denoted by ρ

−(k)
p and ρ

+(k)
p , respectively, i.e., ρ−(k) > ρ

−(k)
p and

ρ+(k) < ρ
+(k)
p .



Energy Trading Game for Microgrids Using Reinforcement Learning 135

The utility of MG i at time k, denoted by u
(k)
i , depends on the energy gain

and the trading profit, given by

u
(k)
i (y) =β ln

⎛

⎝1 + b
(k−1)
i + g

(k)
i − d

(k)
i +

N∑

j=1

yj

⎞

⎠ −
N∑

j �=i

yj

(
I(yj ≤ 0)ρ−(k)

+ I(yj > 0)ρ+(k)
)

− yi

(
I(yi ≤ 0)ρ−(k)

p + I(yi > 0)ρ+(k)
p

)
,

(6)

where I(·) be an indicator function that equals 1 if the argument is true and 0
otherwise.

3 NE of the Energy Trading Game

We first consider the NE of the energy trading game with N = 2 MGs, which is
denoted by x∗

i = [x∗
ij ]1≤j≤2. Each MG chooses its energy trading strategy at the

NE state to maximize its own utility, if the other MG applies the NE strategy.
By definition, we have

u1(x∗
1,x∗

2) ≥ u1(x1,x
∗
2),∀x1 ∈ X (7)

u2(x∗
1,x2) ≤ u2(x∗

1,x∗
2),∀x2 ∈ X. (8)

Theorem 1. The energy trading game with N = 2 microgrids and a power plant
has an NE (x∗

1, x
∗
2) given by

x∗
1 =

[

0,
β

ρ
− 1 − b

(k−1)
1 − g

(k)
1 + d

(k)
1

]

(9)

x∗
2 =

[
β

ρ − 1
− 1 − b

(k−1)
2 − g

(k)
2 + d

(k)
2 , 0

]

, (10)

if
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ− = ρ+ = ρ+p − 1 = ρ−
p + 1 = ρ (11a)

0 <
β

ρ
− 1 − b

(k−1)
1 − g

(k)
1 + d

(k)
1

< − β

ρ − 1
+ 1 + b

(k−1)
2 + g

(k)
2 − d

(k)
2 (11b)

|x12| ≤ |x21| (11c)
x12 > 0, x21 < 0. (11d)

Proof. If (11) holds, by (2) and (3), we have x11 = x22 = 0 and y12 =
min(x12,−x21) = x12, and thus (6) can be simplified into

u1(x1,x
∗
2) = β ln

(
1 + b

(k−1)
1 + g

(k)
1 − d

(k)
1 + x12

)
− x12ρ, (12)

u2(x∗
1,x2) = β ln

(
1 + b

(k−1)
2 + g

(k)
2 − d

(k)
2 + x21

)
− x21(ρ − 1) + x∗

12. (13)
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Thus, we have

du1(x1,x
∗
2)

dx12
=

β

1 + b
(k−1)
1 + g

(k)
1 − d

(k)
1 + x12

− ρ, (14)

and

d2u1(x1,x
∗
2)

dx2
12

= − β
(
1 + b

(k−1)
1 + g

(k)
1 − d

(k)
1 + x12

)2 < 0, (15)

indicating that u1(x1,x
∗
2) is convex in terms of x1. Thus the solution of

du1(x1,x
∗
2)/dx12 = 0 is given by (10). Thus u1(x1,x

∗
2) is maximized by x∗

1

in (9), indicating that (7) holds. Similarly, we can prove that (8) holds.

Corollary 1. At the NE of the energy trading game with N = 2 MGs if (11)
hold, MG 1 buys y∗

12 amount of energy from MG 2, and the latter sells −y∗
22

energy to the power plant, with

y∗
12 =

β

ρ
− 1 − b

(k−1)
1 − g

(k)
1 + d

(k)
1 (16)

− y∗
22 = β

2ρ − 1
ρ(ρ − 1)

+ 2 +
N∑

i=1

(
b
(k−1)
i + g

(k)
i − d

(k)
i

)
, (17)

and the utility of MG 1 and that of MG 2 are given respectively by

u1 =β

(

ln
β

ρ
− 1

)

+ ρ
(
1 + b

(k−1)
1 + g

(k)
1 − d

(k)
1

)
(18)

u2 =β

(

ln
1

ρ − 1
− 1 +

1
ρ

)

+ ρ
(
1 + b

(k−1)
2 + g

(k)
2 − d

(k)
2

)

− 2 −
2∑

i=1

(
b
(k−1)
2 + g

(k)
2 − d

(k)
2

)
. (19)

4 Energy Trading Based on Hotbooting Q-Learning

The repeated interactions among N MGs in a smart grid can be formulated as a
dynamic energy trading game. The amounts of the energy that MG i trades with
the power plant and other MGs impact on its future battery level and the future
trading decisions of other MGs as shown in (2) and (4). Thus the next state
observed by the MG depends on the current energy trading decision, indicating
a Markov decision process. Therefore, an MG can use Q-learning to derive the
optimal trading strategy without knowing other MGs’ battery levels and energy
demand models in the dynamic game. More specifically, the amount of the energy
that MG i intends to sell or purchase in the smart grid at time k, i.e. x

(k)
i ,

is chosen based on its quality function or Q-function denoted by Qi(·), which
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describes the expected discounted long-term reward for each state-action pair.
The state observed by MG i at time slot k, denoted by s

(k)
i , consists of the current

local energy demand, the estimated amount of the renewable energy generated at
time k and the previous battery level of the MG, i.e., s(k)i =

[
d
(k)
i , ĝ

(k)
i , b

(k−1)
i

]
.

The value function Vi (s) is the maximal Q function over the feasible actions
at state s. The Q function and the value function of MG i are updated, respec-
tively, by the following:

Qi

(
s
(k)
i ,x

(k)
i

)
← (1 − α)Qi

(
s
(k)
i ,x

(k)
i

)
+ α

(
u
(k)
i + γVi

(
s
(k+1)
i

))
(20)

Vi

(
s
(k)
i

)
= max

x∈X
Qi

(
s
(k)
i ,x

)
, (21)

where α ∈ (0, 1] is the learning rate representing the weight of current expe-
rience in the learning process, and the discount factor γ ∈ [0, 1] indicates the
uncertainty of the microgrid regarding the future utility.

The standard Q-learning algorithm initializes the Q-function with an all-zero
matrix, which is usually not the optimal value and thus degrades the learning
performance at the beginning. Therefore, we design a hotbooting technique to
initialize the Q-value based on the training data obtained from the large-scale
experiments performed in similar smart grid scenarios. This saves the random
explorations at the beginning of the game and thus accelerates the convergence
rate. More specifically, we perform I similar energy trading experiments before
the start of the game, as shown in Algorithm 1.

Algorithm 1. Hotbooting process for MG i.

Initialize α, γ, Q∗
i (si,xi)=0, and V ∗

i (si)=0, ∀si,xi

Set b
(0)
i = 0

For t = 1, 2, · · · , I
Emulate a similar energy trading scenario for N MGs
For k = 1, 2, · · · , K

Observe ĝ
(k)
i and d

(k)
i

Obtain state s
(k)
i =

[
d
(k)
i , ĝ

(k)
i , b

(k−1)
i

]

Choose x
(k)
i ∈ X via Eq. (22)

For j = 1, 2, · · · , N
If j �= i

Negotiate with MG j to obtain y
(k)
ij via (2)

Sell or purchase |y(k)
ij | amount of the energy to or from MG j

Else

Calculate y
(k)
ii via (3)

Sell or purchase |y(k)
ii | amount of the energy to or from the power plant

End if
End for

Obtain u
(k)
i

Observe b
(k)
i

Calculate Q∗
i

(
s
(k)
i ,x

(k)
i

)
via (20)

Calculate V ∗
i

(
s
(k)
i

)
via (21)

End for
End for
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Algorithm 2. Hotbooting Q-learning based energy trading of MG i.

Initialize α, γ, Qi=Q∗
i , and Vi=V ∗

i

Set b
(0)
i = 0

For k = 1, 2, · · ·
Estimate ĝ

(k)
i and d

(k)
i

Obtain state s
(k)
i =

[
d
(k)
i , ĝ

(k)
i , b

(k−1)
i

]

Select the trading strategy x
(k)
i via Eq. (22)

For k = 1, 2, · · · , K
If j �= i

Negotiate with MG j to obtain y
(k)
ij via (2)

Sell or purchase |y(k)
ij | amount of the energy to or from MG j

Else

Calculate y
(k)
ii via (3)

Sell or purchase |y(k)
ii | amount of the energy to or from the power plant

End if
End for

Obtain u
(k)
i

Observe b
(k)
i

Update Qi

(
s
(k)
i ,x

(k)
i

)
via Eq. (20)

Update Vi

(
s
(k)
i

)
via Eq. (21)

End for

To balance the exploitation and exploration in the learning process, an ε-
greedy policy is applied to choose the amount of the energy to trade with other
MGs and the energy plant, i.e., x(k)

i is given by

Pr(x(k)
i = Θ) =

⎧
⎨

⎩

1 − ε, Θ = arg max
x∈X

Qi

(
s
(k)
i ,x

)

ε
|X| , o.w.

(22)

MG i chooses x
(k)
i according to ε-greedy strategy and negotiates with other

MGs to determine the actual amounts of the energy in the trading yk
i according

to (2). As shown in Algorithm 2, the MG observes the reward and the next state.
According to the resulting utility u

(k)
i , the MG updates its Q function via (20)

and (21).

5 Simulation Results

Simulations have been performed to evaluate the performance of the hotbooting
Q-learning based energy trading strategy in the dynamic game with N = 2 MGs.
In the simulation, if not specified otherwise, the energy storage capacity of each
MG is B = 4, and the energy gain is β = 8. The local energy demands, the energy
trading prices, and the renewable energy generation models of each MG in the
simulations are retrieved from the energy data of microgrids in Hong kong in [13].
As benchmarks, we consider the Q-learning based trading scheme and the greedy
scheme, in which each MG chooses the amount of selling/buying energy according
to its current battery level to maximize its estimated immediate utility.
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Fig. 1. Performance of the energy trading strategies in the dynamic game with N = 2,
B = 4 and β = 8

As shown in Fig. 1, the proposed Q-learning based energy trading strategy
outperforms the greedy strategy with less energy bought from the power plant
and a higher utility of the MG. For example, the Q-learning based strategy
decreases the average amount of the energy purchased from the power plant by
47.7% and increases the utility of the MG by 11.6% compared with the greedy
strategy at the 1500-th time slot in the game. The performance of the Q-learning
based strategy is further improved with the hotbooting technique that exploits
similar energy trading experiences to accelerate the learning speed. As shown
in Fig. 1, the hotbooting Q-learning based energy trading strategy decreases the
amount of the energy purchased from the power plant by 33.7% and increases
the utility of the MG by 9.5% compared with the Q-learning based strategy at
the 1500-th time slot.

6 Conclusion

In this paper, we have formulated an MG energy trading game for smart grids
and derived the NE of the game, disclosing the conditions under which the MGs
in a smart grid trade with each other and reduce the dependence on the power
plant. A Q-learning based energy trading strategy has been proposed for each
MG to choose the amounts of the energy to trade with other MGs and the power
plant in the dynamic game with time-varying renewable energy generations and
power demands. The learning speed is further improved by the hotbooting Q-
learning technique. Simulation results show that the proposed hotbooting Q-
learning based energy trading technique improves the utility of MG and reduces
the amount of the energy purchased from the power plant, compared with the
benchmark strategy.
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