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Abstract. A distributed Nash equilibrium seeking algorithm is pre-
sented for networked games. We assume an incomplete information avail-
able to each player about the other players’ actions. The players commu-
nicate over a strongly connected digraph to send/receive the estimates
of the other players’ actions to/from the other local players accord-
ing to a gossip communication protocol. Due to asymmetric informa-
tion exchange between the players, a non-doubly (row) stochastic weight
matrix is defined. We show that, due to the non-doubly stochastic prop-
erty, there is no exact convergence. Then, we present an almost sure
convergence proof of the algorithm to a Nash equilibrium of the game.
Moreover, we extend the algorithm for graphical games in which all play-
ers’ cost functions are only dependent on the local neighboring players
over an interference digraph. We design an assumption on the communi-
cation digraph such that the players are able to update all the estimates
of the players who interfere with their cost functions. It is shown that the
communication digraph needs to be a superset of a transitive reduction
of the interference digraph. Finally, we verify the efficacy of the algorithm
via a simulation on a social media behavioral case.

1 Introduction

The problem of finding a Nash equilibrium (NE) of a networked game has
recently drawn many attentions. The players who participate in this game aim
to minimize their own cost functions selfishly by making decision in response to
other players’ actions. Each player in the network has only access to local infor-
mation of the neighbors. Due to the imperfect information available to players,
they maintain an estimate of the other players’ actions and communicate over a
communication graph in order to exchange the estimates with local neighbors.
Using this information, players update their actions and estimates.

In many algorithms in the context of NE seeking problems, it is assumed
that the communications between the players are symmetric in the sense that
the players who are in communication can exchange their information altogether
and update their estimates at the same time. This, in general, leads to a doubly
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stochastic communication weight matrix which preserves the global average of
the estimates over time. However, there are many real-world applications in
which symmetric communication is not of interest or may be an undesired feature
in applications such as sensor network.

Literature review. Our work is related to the literature on Nash games and
distributed NE seeking algorithms [1,4,11,16,17]. A distributed algorithm is
proposed in [18] to compute a generalized NE of the game for a complete com-
munication graph. In [7], an algorithm is provided to find an NE of aggregative
games for a partial communication graph but complete interference graph. This
algorithm is extended by [12] for a more general class of games in which the
players’ cost functions does not necessarily depend on the aggregate of players’
actions. It is further generalized for the partial interference graph in [13]. For a
two-network zero-sum game [5] considers a distributed algorithm for NE seek-
ing. To find distributed algorithms for games with local-agent utility functions,
a methodology is presented in [8] based on state-based potential games.

Gossip-based communication has been widely used in synchronous and asyn-
chronous algorithms in consensus and distributed optimization problems [2,3,9].
In [9], a gossip algorithm is designed for a distributed broadcast-based optimiza-
tion problem. An almost-sure convergence is provided due to the non-doubly
stochasticity of the communication matrix. In [2], a broadcast gossip algorithm
is studied to compute the average of the initial measurements which is proved
to converge almost surely to a consensus.

Contributions. We propose an asynchronous gossip-based algorithm to find an
NE of a distributed game over a communication digraph. We assume that play-
ers send/receive information to/from their local out/in-neighbors over a strongly
connected communication digraph. Players update their own actions and esti-
mates based on the received information. We prove an almost sure convergence
of the algorithm to the NE of the game. Unlike in the undirected case [12,13],
herein we cannot exploit the doubly stochastic property for the communication
weight matrix due to asymmetric information exchange. Non-doubly stochastic
property leads to have total average of the players’ estimates not preserved over
time. This was one of the critical steps in the convergence proof in [12,13].

Moreover, we extend the algorithm for graphical games in which the players’
cost functions may be interfered by any subset of players’ (not necessarily all
the players’) actions. The locality of cost functions is specified by an interference
digraph which marks the pair of players who interfere one with another. In order
to have a convergent algorithm, we design an assumption on the communication
digraph by which there exists a lower bound on the communication digraph
which is a transitive reduction of the interference digraph. By this assumption,
it is proved that all the players are able to exchange and update all the estimates
of the actions interfering with their cost functions.

The proofs are omitted due to space limitations, and are available in [14].
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2 Problem Statement: Game with a Complete
Interference Digraph

Consider a multi-player game in a network with a set of players V . The inter-
ference of players’ actions on the cost functions is represented by a complete
interference digraph G(V,E), with E marking the pair of players that interfere
one with another. Note that for a complete digraph every pair of distinct nodes
is connected by a pair of unique edges (one in each direction).

The game is denoted by G(V,Ωi, Ji) and defined over

– V = {1, . . . , N}: Set of players,
– Ωi ⊂ R: Action set of player i, ∀i ∈ V with Ω =

∏
i∈V Ωi ⊂ R

N the action
set of all players,

– Ji : Ω → R: Cost function of player i, ∀i ∈ V ,

In the following we define a few notations for players’ actions.

– x = (xi, x−i) ∈ Ω: All players actions,
– xi ∈ Ωi: Player i’s action, ∀i ∈ V and x−i ∈ Ω−i :=

∏
j∈V \{i} Ωj : All other

players’ actions except i.

The game is defined as a set of N simultaneous optimization problems as follows:
{

minimize
yi

Ji(yi, x−i)

subject to yi ∈ Ωi

∀i ∈ V. (1)

Each problem is run by an individual player and its solution is dependent on
the solution of the other problems. The objective is to find an NE of this game
which is defined as follows:

Definition 1. Consider an N -player game G(V,Ωi, Ji), each player i minimiz-
ing the cost function Ji : Ω → R. A vector x∗ = (x∗

i , x
∗
−i) ∈ Ω is called an NE

of this game if

Ji(x∗
i , x

∗
−i) ≤ Ji(xi, x

∗
−i) ∀xi ∈ Ωi, ∀i ∈ V. (2)

We state a few assumptions for the existence and the uniqueness of an NE.

Assumption 1. For every i ∈ V ,

– Ωi is non-empty, compact and convex,
– Ji(xi, x−i) is C1 in xi, continuous in x and convex in xi for every x−i.

The compactness of Ω implies that ∀i ∈ V and x ∈ Ω,

‖∇xi
Ji(x)‖ ≤ C, for some C > 0. (3)

Let F : Ω → R
N , F (x) := [∇xi

Ji(x)]i∈V be the pseudo-gradient vector of the
cost functions (game map).
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Assumption 2. F is strictly monotone, (F (x) − F (y))T (x − y) > 0 ∀x, y ∈
Ω, x 	= y.

Assumption 3. ∇xi
Ji(xi, u) is Lipschitz continuous in xi, for every fixed u ∈

Ω−i and for every i ∈ V , i.e., there exists σi > 0 such that

‖∇xi
Ji(xi, u) − ∇xi

Ji(yi, u)‖ ≤ σi‖xi − yi‖ ∀xi, yi ∈ Ωi.

Moreover, ∇xi
Ji(xi, u) is Lipschitz continuous in u with a Lipschitz constant

Li > 0 for every fixed xi ∈ Ωi, ∀i ∈ V .

In game (1), the only information available to each player i is Ji and Ω. Thus,
each player maintains an estimate of the other players actions and exchanges
those estimates with the neighbors to update them. A communication digraph
GC(V,EC) is defined where EC ⊆ V ×V denotes the set of communication links
between the players. (i, j) ∈ EC if and only if player i sends his information to
player j. Note that (i, j) ∈ EC does not necessarily imply (j, i) ∈ EC . The set of
in-neighbors of player i in GC , denoted by N in

C (i), is defined as N in
C (i) := {j ∈

V |(j, i) ∈ EC}. The following assumption on GC is used.

Assumption 4. GC is strongly connected.

Our objective is to find an algorithm for computing an NE of G(V,Ωi, Ji)
using only imperfect information over the communication digraph GC(V,EC).

3 Asynchronous Gossip-Based Algorithm

We propose a projected gradient-based algorithm using an asynchronous gossip-
based method as in [12]. The algorithm is inspired by [12] except that the com-
munications are supposed to be directed in a sense that the information exchange
is considered over a directed path. Our challenge here is to deal with the asym-
metric communications between the players. This makes the convergence proof
dependent on a non-doubly stochastic weight matrix , whose properties need to
be investigated and proved. The algorithm is elaborated as follows:

1- Initialization Step: Each player i maintains an initial temporary estimate
x̃i(0) ∈ Ω for all players. Let x̃i

j(0) ∈ Ωj ⊂ R be player i’s initial temporary
estimate of player j’s action, for i, j ∈ V .

2- Gossiping Step: At iteration k, player ik becomes active uniformly at ran-
dom and selects a communication in-neighbor indexed by jk ∈ N in

C (ik) uni-
formly at random. Let x̃i(k) ∈ Ω ⊂ R

N be player i’s temporary estimate at
iteration k. Then player jk sends his temporary estimate x̃jk(k) to player ik.
After receiving the information, player ik constructs his final estimate of all
players. Let x̂i

j(k) ∈ Ωj ⊂ R be player i’s final estimate of player j’s action,
for i, j ∈ V . The final estimates are computed as in the following:
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1. Players ik’s final estimate:
⎧
⎨

⎩

x̂ik
ik

(k) = x̃ik
ik

(k)

x̂ik
−ik

(k) =
x̃
ik
−ik

(k)+x̃
jk
−ik

(k)

2 .
(4)

Note that x̃i
i(k) = xi(k) for all i ∈ V .

2. For all other players i 	= ik, the temporary estimate is maintained, i.e.,

x̂i(k) = x̃i(k), ∀i 	= ik. (5)

We use communication weight matrix W (k) := [wij(k)]i,j∈V to obtain a
compact form of the gossip protocol. W (k) is a non-doubly (row) stochastic
weight matrix defined as follows:

W (k) = IN − eik(eik − ejk)T

2
, (6)

where ei ∈ R
N is a unit vector. Note that W (k) is different from the doubly sto-

chastic one used in [12]. The non-doubly (row) stochasticity of W (k) is translated
into:

W (k)1N = 1N , 1T
NW (k) 	= 1T

N . (7)

Let x̄(k) = [x̄1(k), . . . , x̄N (k)]T ∈ ΩN be an intermediary variable such that

x̄(k) = (W (k) ⊗ IN )x̃(k), (8)

where x̃(k) = [x̃1(k), . . . , x̃N (k)]T ∈ ΩN is the overall temporary estimate at k.
Using (6) one can combine (4) and (5) in a compact form of x̂ik

−ik
(k) = x̄ik

−ik
(k)

and x̂i(k) = x̄i(k) for ∀i 	= ik.

3- Local Step: At this moment all the players update their actions according
to a projected gradient-based method. Let x̄i = (x̄i

i, x̄
i
−i) ∈ Ω, ∀i ∈ V with

x̄i
i ∈ Ωi be the intermediary variable associated to player i. Because of imperfect

information available to player i, he uses x̄i
−i(k) and updates his action as follows:

if i = ik,
xi(k + 1) = TΩi

[xi(k) − αk,i∇xi
Ji(xi(k), x̄i

−i(k))], (9)

otherwise, xi(k+1) = xi(k). In (9), TΩi
: R → Ωi is an Euclidean projection and

αk,i are diminishing step sizes such that
∑∞

k=1 α2
k,i < ∞,

∑∞
k=1 αk,i = ∞ ∀i ∈ V .

The players use their updated actions to update their temporary estimates as
follows:

x̃i(k + 1) = x̄i(k) + (xi(k + 1) − x̄i
i(k))ei, ∀i ∈ V. (10)

At this point, the players are ready to begin a new iteration from step 2. We
elaborate on the non-doubly stochasticity of W (k) from two perspectives.
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1. Design: By the row (non-doubly) stochastic property of W (k), the temporary
estimates remain at consensus subspace once they reach there. This can be
verified by (8) when x̃(k) = 1N ⊗ α for an N × 1 vector α, since,

x̄(k) = (W (k) ⊗ IN )(1N ⊗ α) = 1N ⊗ α. (11)

Equations (9), (10) and (11) imply that the consensus is maintained. On the
other hand W (k) is not column-stochastic which is a critical property used
in [12]. This implies that the average of temporary estimates is not equal to
the average of x̄. Indeed by (8),

1
N

(1T
N ⊗ IN )x̄(k) =

1
N

(1T
N ⊗ IN )(W (k) ⊗ IN )x̃(k) 	= 1

N
(1T

N ⊗ IN )x̃(k). (12)

Equations (9), (10) and (12) imply that the average of temporary estimates is
not preserved for the next iteration. Thus, it is infeasible to obtain an exact
convergence to the average consensus [2]. Instead, we show an almost sure
(a.s.) convergence of the temporary estimates to an average consensus1.

2. Convergence Proof: λmax(W (k)T W (k)) is a key parameter in the proof
(as in [9,12]). Unlike [12], the non-doubly stochastic property of W (k)T W (k)
ends up in having λmax(W (k)T W (k)) > 1. We resolve this issue in Lemma 1.

4 Convergence for Diminishing Step Sizes

In this section we prove convergence of the algorithm for diminishing step sizes.
Consider a memory in which the history of the decision making is recorded. Let
Mk denote the sigma-field generated by the history up to time k − 1 with

M0 = {x̃i(0), i ∈ V }. Mk = M0 ∪
{

(il, jl); 1 ≤ l ≤ k − 1
}

, ∀k ≥ 2. (13)

As explained in the design challenge in Sect. 3, we consider a.s. convergence.
Convergence is shown in two parts. First, we prove a.s. convergence of the tem-
porary estimate vectors x̃i, to an average consensus, proved to be the vectors’
average. Then we prove a.s. convergence of players’ actions toward an NE.

Let x̃(k) be the overall temporary estimate vector. The average of all tem-
porary estimates at T (k) is defined as follows:

Z(k) =
1
N

(1T
N ⊗ IN )x̃(k). (14)

As mentioned in Sect. 3, the major difference between the proposed algorithm
and the one in [12] is in using a non-doubly stochastic weight matrix W (k) which
was a key step. The following lemma is used to overcome these challenges.
1 The same objective is followed by [9] to find a broadcast gossip algorithm (with non-

doubly stochastic weight matrix) in the area of distributed optimization. However,
in the proof of Lemma 2 ([9] page 1348) which is mainly dedicated to this discussion,
the doubly stochasticity of W (k) is used right after Eq. (22) which violates the main
assumption on W (k).
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Lemma 1. Let Q(k) = (W (k)− 1
N 1N1T

NW (k))⊗IN and W (k) be a non-doubly
(row) stochastic weight matrix defined in (6) which satisfies (7). Let also γ =
λmax

(
E[Q(k)T Q(k)]

)
. Then γ < 1.

Proof. See [14].

Theorem 1. Let x̃(k) be the stack vector with all temporary estimates of the
players and Z(k) be its average as in (14). Let also αk,max =maxi∈V αk,i. Then
under Assumptions 1, 4, the following hold.

(i)
∑∞

k=0 αk,max‖x̃(k) − (1N ⊗ IN )Z(k)‖ < ∞ a.s.,
(ii)

∑∞
k=0 ‖x̃(k) − (1N ⊗ IN )Z(k)‖2 < ∞ a.s.

Proof. The proof follows as in the proof of Theorem 1 in [12], but the critical
step here is in using Lemma 1.

Corollary 1. For the players’ actions x(k) and x̄(k), the following terms hold
a.s. under Assumptions 1–4.

(i)
∑∞

k=0 αk,max‖x(k) − Z(k)‖ < ∞ a.s., (ii)
∑∞

k=0 ‖x(k) − Z(k)‖2 < ∞ a.s.,

(iii)
∑∞

k=0 E

[
‖x̄(k) − (1N ⊗ IN )Z(k)‖2

∣
∣
∣Mk

]
< ∞ a.s.

Proof. See [14].

Theorem 2. Let x(k) and x∗ be the players’ actions and the NE of G, respec-
tively. Under Assumptions 3–4, the sequence {x(k)} generated by the algorithm
converges to x∗, almost surely.

Proof. The proof is similar to the proof of Theorem 2 in [12] based on Theorem 1.
Theorem 2 verifies that the actions of the players converge a.s. toward the NE
using the fact that the actions converge to a consensus subspace (Corollary 1).

5 Game with a Partial Interference Digraph

We extend the game defined in Sect. 2 to the case with partially coupled cost
functions, such that the cost functions may be interfered by the actions of any
subset of players. The game is denoted by G(V,GI , Ωi, Ji) where GI(V,EI) is an
interference digraph with EI marking the players whose actions interfere with
the other players’ cost functions. We denote by N in

I (i) := {j ∈ V |(j, i) ∈ EI},
the set of in-neighbors of player i in GI whose actions affect Ji and Ñ in

I (i) :=
N in

I (i) ∪ {i}.
The following assumption is considered for GI .

Assumption 5. GI is strongly connected.

The cost function of player i, Ji, ∀i ∈ V , is defined over Ωi → R where
Ωi =

∏
j∈Ñ in

I (i) Ωj ⊂ R
|Ñ in

I (i)| is the action set of players interfering with the
cost function of player i. A few notations for players’ actions are given:
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– xi = (xi, x
i
−i) ∈ Ωi: All players’ actions which interfere with Ji,

– xi
−i ∈ Ωi

−i :=
∏

j∈N in
I (i) Ωj : Other players’ actions which interfere with Ji.

Given xi
−i, each player i aims to minimize his own cost function selfishly,

{
minimize

yi

Ji(yi, x
i
−i)

subject to yi ∈ Ωi

∀i ∈ V. (15)

Known parameters to player i are as follows: (1) Cost function of player i, Ji and
(2) Action set Ωi. Note that this game setup is similar to the one in [13] except
for a directed GC used for asymmetric communications. Our first objective is to
design an assumption on GC such that all required information is communicated
by the players after sufficiently many iterations. In other words, we ensure that
player i, ∀i ∈ V receives information from all the players whose actions interfere
with his cost function.

Definition 2. Transitive reduction: A digraph H is a transitive reduction of G
which is obtained as follows: for all three vertices i, j, l in G such that edges (i, j),
(j, l) are in G, (i, l) is removed from G.

Note that transitive reduction is different from maximal triangle-free span-
ning subgraph which is used in Assumption 2 in [13].

Assumption 6. The following holds for the communication graph GC :

– GTR ⊆ GC ⊆ GI , where GTR is a transitive reduction of GI .

Lemma 2. Let GI and GC satisfying Assumptions 5, 6. Then, ∀i ∈ V ,
⋃

j∈N in
C (i)

(
N in

I (i) ∩ Ñ in
I (j)

)
= N in

I (i). (16)

Proof. See [14].

Remark 1. (16) verifies that using Assumptions 5, 6 the first objective is satis-
fied.

The assumptions for existence and uniqueness of an NE are Assumptions
1–3 with the cost functions adapted to GI . Our second objective is to find an
algorithm for computing an NE of G(V,GI , Ωi, Ji) over GC(V,EC) with partially
coupled cost functions as described by the directed graph GI(V,EI).

6 Asynchronous Gossip-Based Algorithm Adapted
to GI

The structure of the algorithm is similar to the one in Sect. 3. The steps are
elaborated in the following:
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1- Initialization Step:
– x̃i(0) ∈ Ωi: Player i’s initial temporary estimate.

2- Gossiping Step:
– x̃i

j(k) ∈ Ωj ⊂ R: Player i’s temporary estimate of player j’s action at k.
– x̂i

j(k) ∈ Ωj ⊂ R: Player i’s final estimate of player j’s action at k, for
i ∈ V, j ∈ Ñ in

I (i).
– Final estimate construction:

x̂ik
l (k) =

{
x̃
ik
l (k)+x̃

jk
l (k)

2 , l ∈ (N in
I (ik) ∩ Ñ in

I (jk))
x̃ik

l (k), l ∈ Ñ in
I (ik)\(N in

I (ik) ∩ Ñ in
I (jk)).

(17)

For
i 	= ik, j ∈ Ñ in

I (i), x̂i
j(k) = x̃i

j(k). (18)

We suggest a compact form for gossip protocol by using W I(k).
Let for player i,

W I(k) := Im −
∑

l∈(Ñ in
I (ik)∩Ñ in

I (jk))

esikl
(esikl

− esjkl
)T

2
, (19)

where ei ∈ R
m is a unit vector. Note that W I(k) is different from the doubly

stochastic one used in [13]. See [14] for the design of sij which is an index of
the estimate vector element associated with player i’s estimate of player j’s
action.

– x̃(k) :=
[
x̃1T , . . . , x̃NT ]T : Stack vector of all temporary estimates,

– x̄(k) := W I(k)x̃(k): Intermediary variable.
Using the intermediary variable, one can construct the final estimates as
follows:

x̂i
−i(k) = [x̄sij

(k)]j∈N in
I (i). (20)

3- Local Step: Player i updates his action as follows: If i = ik, xi(k + 1) =
TΩi

[
xi(k)−αk,i∇xi

Ji

(
xi(k),[x̄sij

(k)]j∈N in
I (i)

)]
, otherwise,

xi(k + 1) = xi(k), (21)

Then he updates his temporary estimates:

x̃i
j(k + 1) =

{
x̄sij

(k), if j 	= i

xi(k + 1), if j = i.
(22)

At this point, the players are ready to begin a new iteration from step 2.
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7 Convergence of the Algorithm Adapted to GI

Similar to Sect. 4, the convergence proof is split into two steps:

1. First, we prove a.s. convergence of x̃(k) ⊂ R
m to an average consensus which

is shown to be the augmented average of all temporary estimate vectors. Let
– mout

i := degoutGI
(i) + 1, where degoutGI

(i) is the out-degree of vertex i in GI ,
– 1./mout := [ 1

mout
1

, . . . , 1
mout

N
]T ,

–
H := [

∑

i:1∈N in
I (i)

esi1 , . . . ,
∑

i:N∈N in
I (i)

esiN
] ∈ R

m×N , (23)

where i : j ∈ N in
I (i) is all i’s such that j ∈ N in

I (i). The augmented average of
all temporary estimates is denoted by ZI(k) ∈ R

m and defined as follows:

ZI(k) := Hdiag(1./mout)HT x̃(k) ∈ R
m. (24)

2. Secondly, we prove almost sure convergence of the players actions to an NE.

The proof depends on some key properties of W I and H given in Lemmas 3, 4.

Lemma 3. Let W I(k) and H be defined in (19) and (23). Then, W I(k)H = H.
This can be interpreted as the generalized row stochastic property of W I(k).

Proof. See [14].

Lemma 4. Let QI(k) :=W I(k) − Hdiag(1./mout)HT W I(k) and
γI = λmax

(
E[QI(k)T QI(k)]

)
. Then γI < 1.

Proof. See [14].

Theorem 3. Let x̃(k) be the stack vector with all temporary estimates of the
players and ZI(k) be its average as in (24). Let also αk,max = maxi∈V αk,i.
Then under Assumptions 1′, 5, 6, the following hold.
(i)

∑∞
k=0 αk,max‖x̃(k) − ZI(k)‖ < ∞ a.s., (ii)

∑∞
k=0 ‖x̃(k) − ZI(k)‖2 < ∞ a.s.

Proof. The proof uses Lemmas 3, 4 and is similar to the proof Theorem 1
in [15].

Corollary 2. Let zI(k) := diag(1./mout)HT x̃(k) ∈ R
N be the average of all

players’ temporary estimates. Under Assumptions 1′, 5, 6 the following hold for
players’ actions x(k) and x̄(k):

(i)
∑∞

k=0 αk,max‖x(k) − zI(k)‖ < ∞ a.s., (ii)
∑∞

k=0 ‖x(k) − zI(k)‖2 < ∞ a.s.,

(iii)
∑∞

k=0 E

[
‖x̄(k) − ZI(k)‖2

∣
∣
∣Mk

]
< ∞ a.s.

Proof. See [14].

Theorem 4. Let x(k) and x∗ be all players’ actions and the NE of G, respec-
tively. Under Assumptions 1′–3′, 5, 6, the sequence {x(k)} generated by the
algorithm converges to x∗, almost surely.

Proof. The proof uses Theorem 3 and is similar to the proof of Theorem 2
in [15].
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8 Simulation Results

8.1 Social Media Behavior

In this example we aim to investigate social networking media for users’ behav-
ior. In such media like Facebook, Twitter and Instagram users are allowed to
follow (or be friend with) the other users and post statuses, photos and videos
or also share links and events. Depending on the type of social media, the way
of communication is defined. For instance, in Instagram, friendship is defined
unidirectional in a sense that either side could be only a follower and/or being
followed. Recently, researchers at Microsoft have been studying the behavioral
attitude of the users of Facebook as a giant and global network [10]. This study
can be useful in many areas e.g. business (posting advertisements) and politics
(posting for the purpose of presidential election campaign). Generating new sta-
tus usually comes with the cost for the users such that if there is no benefit in
posting status, the users don’t bother to generate new ones. In any social media
drawing others’ attention is one of the most important motivation/stimulation
to post status [6]. Our objective is to find the optimal rate of posting status for
each user to draw more attention in his network. In the following, we make an
information/attention model of a generic social media [6] and define a commu-
nication between users (GC) and an interference graph between them (GI).

Consider a social media network of N users. Each user i produces xi unit
of information that the followers can see in their news feeds. The users’ com-
munication network is defined by a strongly connected digraph GC in which
i©→ j© means j is a follower of i or j receives xi in his news feed. We also

assume a strongly connected interference digraph GI to show the influence of
the users on the others. We assume that each user i’s cost function is not
only affected by the users he follows, but also by the users that his follow-
ers follow. The cost function of user i is denoted by Ji and consists of three
parts: (1) Ci(xi) := hixi, hi > 0 which is a cost that user i pays to pro-
duce xi unit of information. (2) f1

i (x) := Li

√∑
j∈N in

C (i) qjixj , Li > 0 which is

a differentiable, increasing and concave utility function of user i from receiv-
ing information from his news feed with f1

i (0) = 0 and qji represents fol-
lower i’s interest in user j’s information and Li is a user-specific parameter.
(3) f2

i (x) :=
∑

l:i∈N in
C (l)Ll

(√∑
j∈N in

C (l) qjlxj −
√∑

j∈N in
C (l)\{i} qjlxj

)
which is an

incremental utility function that each user obtains from receiving attention in
his network with f2

i (x)|xi=0 = 0. Specifically, this function targets the amount
of attention that each follower pays to the information of other users in his news
feed. The total cost function for user i is then Ji(x) = Ci(xi)−f1

i (x)−f2
i (x). For

this example, we consider 5 users in the social media whose network of followers
GC is given in Fig. 1(a). From GC and taking Ji into account, one can construct
GI (Fig. 1(b)) in a way that the interferences among users are specified. Note
that this is a reverse process of the one discussed in Sect. 5 because GC is given
as the network of followers and GI is constructed from GC . For the particular
networks in Fig. 1(a, b), Assumptions 5, 6 hold. We then employ the algorithm
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Fig. 1. (a) GC (b) GI (c) Convergence of the unit of information that each user pro-
duces to a NE over GC .

in Sect. 6 to find an NE of this game for hi = 2 and Li = 1.5 ∀i ∈ V , and
q41 = q45 = 1.75, q32 = q43 = 2 and the rest of qij = 1. The result is shown in
Fig. 1(c). To analyze the NE x∗ = [0, 0, 0.42, 2.24, 0.14]T , one can realize from
GC that user 4 has 3 followers (users 1, 3 and 5), user 3 has 2 followers (users
2 and 5) and the rest has only 1 follower. Then, it is straightforward to predict
that users 4 and 3 could draw more attentions and produce more information.
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