
Xj-ASD: Towards a j-ASD DSL eXtension
for Application Deployment in Cloud-Based

Environment

Kanga Koffi1(&), Babri Michel2, Brou Konan Marcelin2,
and Goore Bi Tra2

1 Ecole Doctorale Polytechnique de l’Institut Nationale Polytechnique Félix
Houphouët Boigny (EDP/INPHB), Côte D’ivoire UMRI 78: Electronique

et Electricité Appliquée Laboratoire de recherche en informatique
et télécommunication, Yamoussoukro, Côte d’Ivoire

koffi.kanga@larit.net
2 Institut Nationale Polytechnique Félix Houphouët Boigny (INPHB),

Côte D’ivoire UMRI 78: Electronique et Electricité Appliquée,
Laboratoire de Recherche en Informatique et Télécommunication,

Yamoussoukro, Côte d’Ivoire
{michel.babri,kmbrou,goore}@inphb.edu.ci

Abstract. In this paper, we propose an extension of the grammar of an
application deployment constraints description language from a cloud comput-
ing platform. To do this, we draw a meta data model proposed by [1] for an
application deployment in a cloud. This meta model, we extend j-ASD for the
consideration of compatibility constraints or conformity between the virtual
image data file formats used by the components of the virtual machines and
those target sites that are deploying Smartphones, PC, etc. …
Indeed for a full deployment of applications from a cloud environment on

high mobility rate (Smartphone, PC, etc. …), it occurs to ensure compliance of
the data formats of these environments to that of Cloud platform. This con-
formity proves a prerequisite for deployment on a device from a cloud. To
address these compliance constraints, we formalize them in matrix form and
propose the use of a constraint solver.

Keywords: Application deployment � Software component description
language constraint � Cloud computing � Deployment plan

1 Introduction

Designing application requires an approach called life cycle. This approach, in what-
ever form (V, waterfall, spiral …) includes a number of activities (design, imple-
mentation, validation, deployment, and administration) regardless of the approach [1].
These activities include the deployment is a complex process ranging from the pro-
duction of the application and uninstall it [2].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
T.F. Bissyande and O. Sie (Eds.): AFRICOMM 2016, LNICST 208, pp. 122–132, 2018.
https://doi.org/10.1007/978-3-319-66742-3_12

Today, with the emergence of the Internet of Things monitoring the development of
service models in the Cloud, mobile device users want to use their applications on their
phone, tablet and other materials with high rates of mobility. In this context, the
deployment of applications becomes an important activity with its constraints corollary,
given the diversity of deployment sites and components that make up these
applications.

Faced with this dilemma, the research tried to find solutions to the architecture and
deployment platform [2], the definition of deployment constraints languages [3] to
describe the application to deploy, and the constraints of facilities. In this paper we
propose an extension of this language to the specificities of a Cloud to benefit users of
the benefits in terms of computing power and the Cloud profitability. Also in order to
cover all the deployment activities, we integrate other deployment constraints are not
supported, namely the management of data formats, image management from various
file virtualization to deploy. The rest of the paper is organized as follows. In Sect. 2, we
are a state of the art in this field. Section 3 is devoted to our contribution. We end with
a conclusion while generating few prospects for our future work.

2 State of the Art

Several research studies describing the tools and procedures around the deployment
exist. But to our knowledge, these are almost always intended for fixed topologies
machines and/or known at the time of deployment and therefore not relevant to our
context. This section presents some research related to the application deployment.

Fractal Deployment Framework (FDF) [4], is a tool that provides a generic in
deploying applications. It consists of a deployment description language, a set of
components, and user interfaces.

The deployment unit is an archive that contains the binaries and software
deployment descriptor. The main limitation of this tool is the static nature of the
deployment although a static deployment plan qualifies in relatively stable environ-
ments such as grid computing, this type of tool cannot be used in environments
characterized by a topology network dynamics as cloud environments. Another limi-
tation of FDF is that it does not provide heuristic dynamic reconfiguration that allows
the incorporation of machinery malfunction situations for example.

Software Dock [5], it provides a Framework for the configuration and deployment of
software. It uses a system of events and mobile agents to control deployment activities
such as installation and activation. Deployment life cycle includes the installation,
activation, deactivation, updating, uninstalling and reconfiguring. The deployment sys-
tem uses a client/server architecture associated with event management system. A server
called “release dock” is installed at the manufacturer’s website. A customer called “fi eld
dock” is installed at each site software consumers, which acts as an interface for the
release dock. However, Software Dock does not allow the description of the software

Xj-ASD: Towards a j-ASD DSL eXtension 123

architecture and deployment constraints. Software Dock also offers a centralized, static
deployment process that does not meet the needs of dynamic reconfiguration and
deployment of open environments.

R-OSGi [6] is a middleware that uses the standards of the OSGi specification to
support the management of distributed modules. Upon deployment, R-OSGi can be
used to execute a distributed application simply indicate the deployment locations of
deferent modules. The developer of an R-OSGi application has full control over how
the application is distributed. Manual control of the deployment process and its con-
figuration in a large scale environment left is a very complex task and represents for us
a very important human intervention in the deployment process. In addition, R-OSGi is
only intended to create static software deployments that cannot be used in environ-
ments distributed large-scale open as ubiquitous systems and P2P.

Dearle et al. proposed in [7] middleware, MADME (Monitoring Automatic
Deployment and Management Engine) for deploying and managing applications
consist of one or more components called Cingal-bundle. Deployments constraints are
specified with the Deladas language. The deployment administrator specifies an initial
deployment target, then the deployment system tries to generate a configuration that
describes the process of deploying the application components. After initial deploy-
ment, the deployment system verifies the satisfaction of the initial target and redeploys
the application if necessary. This approach has similar motivations to ours. Indeed, one
of the reasons is the reduction of human intervention in the deployment process by
automatically generating the deployment plan. However, the proposed middleware is
not usable in environments with an unpredictable topology. In addition the user of the
tool must restart the entire deployment process. Upon the occurrence of a disconnection
or failure for example.

A DSL-Based Approach to Software Development and Deployment on Cloud [8]:
In this work, Krzysztof Sledziewski et al. present an approach incorporating a DSL for
the development and deployment of applications in a Cloud. In this approach the
authors propose that developers use a DSL for describing the model associated with the
application. This model is then translated into a specific code and automatically
deployed in a cloud. This approach is specific to a deployed in a Cloud and facilitates
the work of the administrator to deploy. However, the proposed approach does not take
into account the conditions or deployment constraint to satisfy.

A DSL for Multi-scale Deployment and Autonomic Software [9]: In this article,
Raja BOUBEL and Al. present a progressive work that aims to define and test a DSL
dedicated to autonomic application deployment in multi-scale environments. In these
environments, the network topology may vary according to hardware failures.

In this work the authors design a DSL to support the expression of constraints and
properties related to autonomic application deployment in multi-scale environments.
However, they do not provide in their DSL prior restraint activation, deactivation,
installation, application uninstall.

124 K. Koffi et al.

J-ASD [3]: A middleware for autonomic software deployment. It consists of a set of
software that can best meet the deployment problem of a distributed application
regardless of the execution context. In other words this middleware performs inde-
pendently (with minimal human intervention as possible) a deployment that meets a set
of constraints defined by the deployment administrator. It is able to self- adapt and
automatically resolve some problems associated with the instability and the opening of
the environment. It is based on:

– A specific language (DSL) for the description of deployment constraints called
j- ASD DSL

– A network service to automatically detect deployment target sites
– A bootstrap middleware for the preparation of the execution environment
– A constraint solver for solving constraints and deployment plan generation
– A deployment support and an adaptable mobile agent system for the execution and

supervision of deployment activities
– A deployment algorithm.

However j-ASD, in defining the conditions to be met for a deployment does not
take into account the level of use of the battery devices, characteristics that are related
to cloud virtual machines and images of virtualized applications, formats data images to
deploy.

3 Contribution

In view of the existing work, more deployment-related issues seem to be resolved. In
particular, the deployment constraints related problems (install/uninstall). Nevertheless,
some aspects of the deployment as part of activation, deactivation and update com-
ponents seem not yet to find solutions.

An analysis of existing studies shows that configure and deploy of application in a
large scale environment such as the Cloud is not easy. This complexity is due to the
multitude of components, the heterogeneity and the large number of target sites in an
environment with high levels of mobility (and therefore variable topology) that make
up an application. So our contribution is as follows:

– Taking into account the given file formats to deploy the devices from virtual
machines in cloud platforms.

– Extension of the grammar description language deployment constraints J-ASD DSL
initiated by [3] to take into account other constraints (i) pre-deployment, (ii) relating
to the use of the battery deployment target sites from a cloud platform (iii) network
latency which is based on the deployment plan and also the power of the processors.

Xj-ASD: Towards a j-ASD DSL eXtension 125

3.1 Modeling the Inclusion of Data Formats (Fig. 1)

In Fig. 1, our model shows different class with roles based on their attributes.

In the following table, we present these different classes and their role in the process
of deploying an application (Table 1).

Fig. 1. Meta data model for deployment in the cloud [1]

Table 1. List of class in Fig. 1 and their respective roles

Class Roles

Application Is characterized by an application name, version, and an ID. It may consist
of components (class has) and also its use requires the satisfaction of certain
vis-à-vis stress-related services to its components (stress class)

Composant A component appears as the component of an application. It is also
characterized by a name, version and status (on/off)

Service This class is characterized by name, a role and also may depend on the
operating state of other services (reflexive link a)

Contrainte Determines if a service is available for the proper functioning of an
application. In which case an adaptation of the application to another service
arose

(continued)

126 K. Koffi et al.

3.2 Constraints Description Language Extension j-ASD DSL Based
on the Model of Fig. 1

J-ASD DSL is a language with a simplified and intuitive grammar. This grammar is
developed using Xtext1 which is a specific languages Development Framework. As
stipulated in the j-ASD DSL precursors, an application consists of one or more com-
ponents. Each is defined by an identifier, a version, execution url or implementation but
also by a set of software dependencies, hardware constraints and deployment con-
straints. So from the j-ASD DSL grammar presented in a we extend this grammar to
battery usage constraints (PowerPref) potential deployment sites, internet network
latency constraints (NetLatency) and also to the constraints CPU power (MIPSPref
Million Instructions Per Second) and also to the constraints of the data format as shown
in b in the same conditions given the high rate of mobility in Cloud environments.

Table 1. (continued)

Class Roles

Comporte Materializes the creation of an application from components. For proper
operation, the component needs the availability of several services (b) or as
other components (reflexive link c)

Virtual_noeud Represents a virtual machine. It is characterized by a name, CPU frequency,
memory value, 2 Boolean attributes (cloudserver and agent_cloud) whether
the node is a server or client

Disk This class embodies the place of deployment of the virtual machine. It is
characterized by a logical name (LOGICAL_NAME), size (size), an
identifier (name_disk). It consists of a set of files (file).

File Represents the element to be virtualized to form an image. It has the
following features: a Id_image representing the corresponding image, the
disk on which it is stored, its reference (path, a boolean flag to see if it is a
file server to a virtual machine server

Image Represents the file element (file) virtualized. it is characterized by the set of
packages that make up the data and the OS with which it is compatible

Package Each package of the image has a name (name_package), a version
(version_package) and a release (release_package) that distinguish it from
other packages

Data Here this class characterizes the image because it determines the version
(version_data) Image data type (or format) (type_data) data, and the data
source (source_data)

OS This class in turn determines the operating system on which an image can be
deployed. It has a name (osname), size (size) for the space installation
requires a distribution (os_distribution) and version (os_version)

1 http://www.eclipse.org/Xtext.

Xj-ASD: Towards a j-ASD DSL eXtension 127

http://www.eclipse.org/Xtext

a- J-ASD DSL language grammar Xtext
grammar eu.itsudparis.inf.JASDDsl with
org.eclipse.xtext.common.Terminals
generate jASDDsl
Model:
Software=Software
Components+=Component+(HostConstraints+=HostConstrain

t*)?
Deployment=Deployment;
Software:
"Software" "{"
"Name" "=" name=ID
"Version" "=" ver=INT
"Components" "=" components+=(ID)*
"}";
Component:
"Component" "{"
"Name" "=" name=ID
"Version" "=" ver=INT
"Url" "=" url=STRING
("Dependencies" "=" dependencies+=ID*)?
"}";
HostConstraint:
"HostConstraint" "{"
"Name" "=" name=ID
constraints+=(OsPref | CPUPref |
RAMPref | HDPref | NetSpeedPref)*
"}";
Deployment:
"Deployment" "{"
{Deployment} members+=MemberDecl*

"}";
MemberDecl:
component=ID "@" localisation=Localisation
("with" constraints+=(ID)*)?;
OsPref:
"OSNameContains" name=STRING;
CPUPref:
"CPULoad" InfSup val=INT "%";
terminal InfSup:
"<" | ">" | ">=" | "<=";
RAMPref:
"RAM" sym=InfSup val=INT "MB";
HDPref:
"HD" sym=InfSup val=INT "MB";
NetSpeedPref:
"NetSpeed" sym=InfSup val=INT "kb/s";
Localisation:
IPv4 | NetName | Val | Interval | All;
terminal IPv4:
INT ’.’ INT ’.’ INT ’.’ INT;
NetName:
STRING;
Val:
INT;
terminal Interval:
INT ".." INT;
terminal All:
"all";

b- Extension given to grammar j-ASD DSL language

‘contribution to the extension of the grammar
'J-ASD DSL# puissance de la batterie
PowerPref :
"Power" sym=InfSup Val=INT "%";
network latency
NetLatency :
"NetLat" sym=InfSup Val=INT "ms";
puissance du processeur
MIPSPref :
"MIPSPval" sym=InfSup Val=INT "MIPS";
‘Extension into account the meta data model
Data format
Format :
"format" "=" name=STRING ;
DataConstraint:
"dataConstraint" "{"
"Name" "=" name=ID
"Version" "=" ver=INT
"type" "=" name=STRING
"source" "=" name=STRING
"}";

128 K. Koffi et al.

So as defines our extension grammar highlights a number of constraints to be
satisfied to make a full deployment. In this work, as we make a deployment from a
cloud, we propose the use XMPP protocol [11] for the management of network dis-
covery sites belonging to the deployment plan. If network discovery services are
defined and the constraints of compliance (yes compatibility) of defined data format
property, our second contribution is working to formalize and solving these constraints
as a constraint satisfaction problem (CSP) that can find solution using a constraint
solver. As part of our prototype we chose the open source constraint solver Choco [11]
to be consistent with [9].

3.3 Formalization and Resolution of Constraints

As part of j DSL-ADS, the constraint satisfaction problem is constructed from a set of
integer variables (compliance matrix) and a set of constraints on these variables. Under
these conditions we model the CSP program with the following:

– A set C software components forming the application to deploy
– Let C ¼ fC1;C2;C3; . . .;Cng
– A set S deployment target sites detection network discovery service
– A given compliance matrix (Cfm) modeling the compliance or non-compliance of

file images of the data formats supported by virtual machines from components that
they have with those of deployment sites is such that:
• Cfm (Ci, Sj) = 1, if the component Ci has the same data format as the site Sj
• Cfm (Ci, Sj) = 0, if the component Ci has the same data format as the site Sj

– A Q set of constraints on the Si sites (e.g. Powerload, Netlatency …)
– A set of constraints on the variables Cfm (Ci, Sj)

Xj-ASD: Towards a j-ASD DSL eXtension 129

c-Example of J-ASD Program DSL written taking into account the
constraints of data format compliance for deployment

Software {
Name=niveau_de_test
Version=1
Components=ramSize display
}
Component {Name=RamSize
Version=1
Url=http://x.fr/RAM-Size.jar }
Component {Name=display
Version=1
Url="http://x.fr/Display.jar"}
HostConstraint {Name=Display-Constraint
CPULoad > 80%
RAM >= 40 MB
OSNameContrains "Linux"}
Deployment {
RamSize @ all
display @ 2 with Display-Constraint
}

extension taking into account our contribution to the constrained

*** definition of the characteristics of the component niveau_batterie
Component {
Name=niveau_batterie
Version=1
Url="http://x.fr/niveau_batterie.jar"
}
*** definition of CONSTRAINT deployment contraint3
dataConstraint {
Name=contraint3
version = 2
Type = “.exe”
OSNameContains "Windows"
}
*** component deploying niveau_batterie
*** on all sites is considering the contrainte3
Deployment {
niveau_batterie @ all with Constraint3
}

In this j-ASD DSL program, we have a description of deploying an application
called “niveau_de_test” consists of the following components: ramsize - Display -
niveau_batterie characterized by their name (Name), their version, the URL of storage.
The program also includes a set of constraints (Display-constrained constraint3), which
are constraints on the size of the RAM memory, the processor occupancy and operating
system.

130 K. Koffi et al.

The deployment constraints (activation) Niveau_batterie mean that the component
must be deployed on all sites that respect Contrainte3 constraint. This constraint on the
data format of the images of virtual machine files.

4 Conclusion

In this article we presented our contribution to the application deployment problem
solving from a Cloud by providing an extension to the grammar of deployment con-
straints description language j-ASD DSL. These deployment constraints relate to the
compatibility of data formats virtual images of the component files. This set of con-
straints is in solution using a constraint solver for calculating a deployment plan.

Our proposed extension can be used to manage the power consumption, latency
network’s management to ensure full deployment from a cloud-based environment.
Also it helps enable deployment of equipment in a variable topology environment.

For now we continue our work with the deployment of OSGi Framework. How-
ever, the use of new deployment unit as SCA applications (Service Component
Architecture) (Open Service Architecture Collaboration 2007) with Frascati platform
[Seinturier 2009 Seinturier 2012] as deployment media is a natural extension of j-ASD
DSL.

References

1. Etchevers, X.: Déploiement d’applications patrimoniales en environnements de type
informatique dans le nuage. Other. Université de Grenoble, 2012. French. <NNT:
2012GRENM100>. <tel-00875568>

2. Dibo, M.: UDeploy: une infrastructure de déploiement pour les applications à base de
composants logiciels distribués. Other. Université de Grenoble, 2011. French. <NNT:
2011GRENM001>. <tel-00685853>

Xj-ASD: Towards a j-ASD DSL eXtension 131

3. Matougui, M.E.A., Leriche, S.: j-ASD: un middleware pour le déploiement logiciel
autonomique. NOTERE/CFIP’12: Conférence Internationale Nouvelles Technologies de la
Répartition/Colloque Francophone sur l’Ingénierie des Protocoles, Oct. 2012, Anglet,
France. Cepadues. <hal-00757154>

4. Quinton, C., Duchien, L.: Vers un Outil de Configuration et de Déploiement pour les
Nuages. JLdP - Journee Lignes de Produits, Nov 2012, Lille, France. pp. 83–94.
<hal-00747319>

5. Flissi, A., Dubus, J., Dolet, N., Merle, P.: Deploying on the grid with deployware. In:
CCGRID, pp. 177–184 (2008)

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick and dirty
way. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) Companion to the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, SPLASH/OOPSLA 2010, Reno/Tahoe, Nevada, USA. SPLASH/OOPSLA
Companion, pp. 307–309. ACM, October 2010. doi:10.1145/1869542.1869625

7. Rellermeyer, Jan S., Alonso, G., Roscoe, T.: R-OSGi: distributed applications through
software modularization. In: Cerqueira, R., Campbell, Roy H. (eds.) Middleware 2007.
LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76778-7_1

8. Dearle, A., Kirby, G.N.C., McCarthy, A.: A framework for constraint- based deployment
and autonomic management of distributed applications. CoRR, vol. abs/1006.4572 (2010)

9. Sledziewski, K., Bordbar, B., Anane, R.: A DSL-based approach to software development
and deployment on cloud. In: 24th IEEE International Conference on Advanced Information
Networking and Applications, AINA 2010, Perth, Australia. AINA, pp. 414–421. IEEE
Computer Society, April 2010. doi:10.1109/AINA.2010.81

10. Boujbel, R., et al.: A DSL for multi-scale and autonomic software deployment. In: The
Eighth International Conference on Software Engineering Advances, ICSEA 2013, pp. 291–
296 (2013)

11. The Choco Team: Choco: an open source java constraint programming library. Ecole des
Mines de Nantes, Research report (2010). http://www.emn.fr/z-info/choco-solver/pdf/choco-
presentation.pdf

12. Saint-Andre, P., Smith, K., Tronçon, R.: XMPP: The Definitive Guide: Building Real-Time
Applications with Jabber Technologies. O’Reilly Media, Inc. (2009)

132 K. Koffi et al.

http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1007/978-3-540-76778-7_1
http://dx.doi.org/10.1109/AINA.2010.81
http://www.emn.fr/z-info/choco-solver/pdf/choco-presentation.pdf
http://www.emn.fr/z-info/choco-solver/pdf/choco-presentation.pdf

	Xj-ASD: Towards a j-ASD DSL eXtension for Application Deployment in Cloud-Based Environment
	Abstract
	1 Introduction
	2 State of the Art
	3 Contribution
	3.1 Modeling the Inclusion of Data Formats (Fig. 1)
	3.2 Constraints Description Language Extension j-ASD DSL Based on the Model of Fig. 1
	3.3 Formalization and Resolution of Constraints

	4 Conclusion
	References

