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Abstract. To meet the requirements of high system capacity and cov-
erage of 5G network, ultra-dense network is viewed as the key technol-
ogy for networking evolution. And for densely deployed small cell net-
work, self-optimization is crucial in the aspect of reducing the cost of
network management while optimizing the network performance. This
paper focuses on the coverage and capacity optimization, proposing a
mathematical combined optimization function to balance the conflicting
key performance indicators. And under this model, we propose the tabu
search algorithm for generating new antenna transmit power to optimize
the performance. Simulation results show that our proposed algorithm
gets significant improvement in network performance and outperforms
the adaptive simulated annealing in convergence speed while optimizing.
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1 Introduction

The explosive growth of mobile data traffic these years puts forward high require-
ments for the bandwidth and performance of coverage and capacity of the 5th
generation (5G) networks, such as ultra-high traffic volume density and ultra-
high peak data rate [1]. This makes the traditional way of covering just by macro
base station (MBS) difficult to meet the users’ needs nowadays. Besides, large
amount of data traffic occurs in some hot-spot areas, such as the office build-
ing, dense residential area, subway and other apartment, meanwhile, the data
traffic is also unevenly distributed, thus causing not ideal signals and congestion
in part of the network. Therefore, the ultra-dense deployment of short-distance,
low-power small cell base stations become an effective solution for the chal-
lenges. Ultra-dense network (UDN) is viewed as one of the key technologies for
5G [2]. The densely deployed small cells can bring hundreds of times capacity
improvement in extreme cases [1], as well as enhancement in coverage, thereby
increasing the capacity of the entire network. In particular, for both indoor and
outdoor high-density services requiring areas, the dense deployment of small
cell base stations can effectively improve the quality of service (QoS) and pro-
vide more efficient services [3]. However, the expected large number of small
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cells as well as their much more dynamic unplanned deployment raises a variety
of challenges in the area of network management [4]. To improve the network
performance, automate the optimization of the network, simplify the network
designing and reduce operation cost of the network, the network should be more
intelligent to improve itself when needing. As one of the self-organized func-
tions, self-optimization of the network can replace manually operations, thus
reducing the cost of network management while optimizing the network perfor-
mance. Through monitoring changes of performance indexes and fault events
during the network operation, self-optimization can automatically select certain
optimization algorithm to adjust corresponding parameters of the network, so
as to achieve optimal system performance.

The coverage and capacity optimization (CCO) is based on the identifica-
tion of the coverage and capacity issues and select an optimization algorithm
to automatically modify parameters, to repair and improve the coverage and
capacity problems. Most of the contributions consider the antenna downtilt as
the parameter to be modified in LTE networks [5], while in ultra-dense network,
the small cell base stations’ antennas are omnidirectional and isotropic, hence we
choose other parameters like transmit power to modify. Most of the existing work
concentrates on combined optimization. [6] constructed an objective function
to jointly maximize throughput and coverage, using a probability distribution
function (PDF) for throughput measurements and an estimate of the number
of covered and uncovered users of each considered cell. [7] proposed a general
concept for the self-organization of multiple KPIs rather than only an algorithm
for tilt-based CCO. And they proposed an effective tilt-based algorithm which
combined to optimize coverage and capacity in downlink (DL) and uplink (UL)
jointly. What’s more, it used a real-world urban LTE deployment scenario in
practice and outperformed well. [8] used the concept of effective capacity as the
optimization objective, which involved the index of coverage in function, thus
achieving joint optimization. When facing high complexity optimizing scenario,
[9] introduced a low-complexity interference approximation model and formu-
lated the optimization problem as a mixed-integer linear program. They pro-
posed a traffic-light-related approach to consider multi-parameter optimization.
[10] only modified a limited set of basic beams combined with an overall beam,
to reduce complexity caused by 2-dimensional antenna arrays, while achieving
adequate performance gains by Nelder-Mead and Q-learning approach. How-
ever, that paper mainly optimized coverage in its cost function instead of its
so-called CCO. In this paper, we focus on optimize coverage and capacity in
UDN, and propose a tabu search (TS) algorithm for adjusting parameters and
reduce complexity under our proposed combined mathematical model.

The remainder of the paper is organized as follows. In Sect. 2, the system
model and our defined mathematical model for combined optimization is intro-
duced. In Sect. 3, we present our proposed TS algorithm and describe details
applying in our ultra-dense small cell network. Simulation environment and
results of CCO performance are presented and contrast with the Simulated
Annealing (SA) approach in Sect. 4, and Sect. 5 concludes this paper.
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2 System Model

We consider a scenario case based on a hexagonal 19-site network deployment,
which has original one site deployed in the middle and other six ones wrap-
around it symmetrically, also with other twelve ones attached to these six ones’
sides. These are 19 macro base stations, each with three sectors deployed as
hexagon. The path loss between users and their serving base stations is defined
by the distance between them, including propagation loss, shadow fading and
antenna gain. It can be affected by many configuration parameters, including
transmit power. In our work, we adjust the transmit power of the small cells
with other parameters fixed, to optimize coverage and capacity in the network.

Consider a 19-site network consisting of K MBSs, M SBSs and N deployed
UEs. MBSs are indexed as l, l = 1, 2, · · · ,K, SBSs are indexed as j, j =
1, 2, · · · ,M , while UEs are indexed as i, i = 1, 2, · · · , N . The transmit power
of all the SBSs is denoted by the vector p, p = {p1, p2, · · · , pM}. In the down-
link, the transmission channel gain between SBS j and the UE i is expressed as
gij , thus the received signal strength at UE i from SBS j is defined as follows:

Prx (i, j) = pjgij (1)

Assume that the system noise is σ2, hence the downlink SINR of UE i asso-
ciated with SBS j is calculated as:

SINRi =
gijpj

σ2 +
∑

k �=j

gikpk
(2)

Then we use a function to map each user’s SINR to its spectal efficiency,
shown in the form of a step function with each step a linear function.

SEi = Map(SINRi) (3)

The performance of coverage and capacity can be judged by a measurement of
spectral efficiency, that is, using average spectral efficiency to represent coverage
and edge spectral efficiency for capacity. Hence, we use a combined optimization
function to judge the performance of coverage and capacity of the overall system.
The function can balance coverage and capacity optimization objectives, by using
a compromise coefficient γ, 0 < γ < 1. The combined optimization function is
defined as follows:

F (p) = (1 − γ)SEave + γSEedge (4)

where SEave is the average spectral efficiency which can be obtained by cal-
culating the mean of all UEs’ spectral efficiency, while SEedge stands for the
edge spectral efficiency which can be obtained by calculating the 5% -tile of the
UEs’ spectral efficiency. The typical value γ can take is 0.5, and a bigger value
means we choose to pay more attention to improving the coverage performance,
otherwise, to improving the capacity performance.
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3 Optimization Schemes Based on Tabu Search

In order to optimize the combined function shown in 4, we use the improved tabu
search algorithm to iteratively update the transmit power of SBSs. Tabu search
are more used to solve combinatorial optimization problems, especially when the
dimension of the problem is really high and with large amount of data. It can
reduce the complexity when finding the optimal solution. The main idea of TS
is to mark some local optimal solutions and try to avoid (but not completely
prohibit) them, so as to avoid falling into local optima.

The TS algorithm begins with an initial solution vector, which in our work
is the initial transmit power of all SBSs. However, in our work, the number of
SBSs comes to 152, which means each macro cell has two small cell clusters and
four SBSs in each cluster. What’s more, to find a more optimal solution vector,
TS defines a neighborhood around its last iteration’s solution vector. In view of
the transmit power of each SBS is in the range of [−10 dBm, 24 dBm], we may
have a large amount of neighborhood vectors to deal with. In order to avoid
high complexity caused by the two aspects described above when calculating,
instead of dealing with all the transmit power in one small iteration, we choose
to view the SBSs in the same macro cell as a group. And in each inner iteration
we just change one group’s transmit power, to make the power vector move
to the best vector among this group’s neighboring vectors. The inner iteration
continued until all the 19 groups’ transmit power vectors have been changed to
a best solution in their neighboring vectors. After finished one outer iteration,
which means all SBSs’ transmit power has moved to a best solution in their
neighboring vectors, TS algorithm continues next outer iteration. As for the
specific method to choose the best vector among neighboring vectors, definitions
of related concepts should be given first. Firstly, the “neighboring vector” are
the vectors that only have one element different from all the elements of the
given vector. The difference aforementioned is constrained by “neighbor range”,
which means that the difference between the changed element and the one in the
given vector must be no more than neighbor range. The TS algorithm attempts
to avoid local optima by marking the newly gotten solution vectors of the past
few iterations as “tabu”. The number of the past few iterations is called “tabu
period”, set as P , which means if a solution vector is marked as tabu in an
iteration, it will remain as tabu in tabu matrix for P outer iterations. The
marking “tabu”is stored in “tabu matrix”, whose entries corresponding to certain
solution vectors are non-negative integers. These integers are updated in each
outer iteration, that is, usually begin with P and minus one in each later iteration
until come to zero. After making the definition clear, the steps of TS algorithm
are explained in Algorithm1.

In this paper, to begin with, TS algorithm gets initial SBSs’ transmit power
vector p, marked as BSF , which means the vector chosen is best so far and will
change during the iterations. Set initial algorithm parameters. All entries of the
tabu matrix are set to 0, the tabu period is set to P . The neighbor range is set to
r, the change of transmit power is 1 dBm per unit, so that the difference between
the changed element and the one in the given vector must be no more than rdBm.
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Algorithm 1. CCO based on tabu search algorithm.
Initialization:
1: BSF = p
2: FBest = F (p)
3: Tmtx = zeros;
4: for m iter iterations do
5: found = 0
6: l = 1
7: for lth MBS do
8: find neighborhood vectors of BSF, only change elements corresponding to the

lth MBS
9: calculate F of these neighborhood vectors
10: for all F of the neighborhood vectors do
11: find the best F of these neighborhood vectors
12: if the best F > FBest, or the best F < FBest but “non-tabu” then
13: update FBest with the best F
14: update BSF with the best neighborhood vector
15: mark BSF “tabu” and update corresponding entries in tabu matrix with

P
16: found = 1
17: Break
18: end if
19: exclude the best vector from the neighborhood vectors
20: end for
21: if found = 0 then
22: update FBest with the oldest best F
23: update BSF with the oldest best neighborhood vector
24: mark BSF “tabu” and update corresponding entries in tabu matrix with

P
25: end if
26: end for
27: update entries of tabu matrix as: Tmtx = max {Tmtx− 1, 0}
28: end for
29: return BSF and FBest

Set the maximum number of iterations to m iter. Calculate initial value of the
combined function F (p) according to 4, marked as FBest which reveals the
best optimization function when iterating. Also, set a bool flag, found, which
is initialized to be 0 and denotes whether the best vector among neighboring
vectors has been found or not.

The search algorithm described above is terminated if the maximum number
of iterations m iter is reached. And our final solution vector BSF has been
found before the iteration was stopped. The SBSs transmit power can be updated
according to the gotten BSF . Thus, the coverage and capacity optimization has
been optimized in the ultra-dense small cell network by using the improved TS
algorithm.
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4 Simulation Results

In this section, we apply the TS algorithm proposed in system-level simulation
and evaluate the combined function to judge the performance, in contrasting
with SA approach. In the following, we first introduce our simulation scenario,
and then compare the TS and the SA algorithm upon the combined performance,
the coverage performance and the capacity performance.

4.1 Scenario

Consider a hot-spot area, for example the area around office building, with MBSs
deployed outdoor and SBSs indoor. The indoor clusters are uniformly random
within 2 sectors of macro geographical area. And the SBSs are uniformly random

Table 1. Scenario configuration

Parameters Value

MBS layout Hexagonal grid/19 sites/3 sectors

SBS layout Clusters and SBS are indoor

System bandwidth per carrier 10 MHz downlink

MBS carrier frequency 2.0 GHz

SBS carrier frequency 3.5 GHz

MBS maximum transmit power 46 dBm

SBS maximum transmit power 24 dBm

Path loss model Free space, wall penetration, omnidirectional

MBS penetration loss 20 dB

SBS penetration loss Outdoor: 23 dB, Indoor: 46 dB

Thermal noise density −174 dBm/Hz

Number of clusters per macro cell 2

Number of small cell per cluster 4

Active UEs per macro cell 60

Proportion of indoor hot-spot UEs 1/3

Inter-site distance 500 m

Radius of cluster 50 m

Minimum MBS-UE distance 35 m

Minimum SBS-UE distance 5 m

Minimum MBS-center of cluster distance 105 m

Minimum center of cluster-cluster distance 130 m

Minimum SBS-SBS distance 20 m

MBS shadowing standard deviation 4 dB

SBS shadowing standard deviation 3 dB

Shadowing correlation distance 50 m

Traffic model Full buffer

Scheduling algorithm Round-robin
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dropping within the cluster areas. In our system-level simulation, we build the
topology of our ultra-dense network, the channel model, resource allocation and
the coverage and capacity self-optimization of the SBSs. The abstract topology
of the network and its enlarged display with hot-spot areas and UEs are shown
in Fig. 1. In the part of resource allocation, we calculate each UE’s (including
hot users and others) SINR, and assigned to certain BS to access to according
to SINR. Then we apply our proposed TS algorithm to optimize and evaluate
the performance. Some crucial parameters in simulation are presented in Table 1.
The channel model is set based on requirements of 3GPP TR36.842 (V12.0.0).

Fig. 1. Scenario of ultra-dense network with densely deployed small cells (Color figure
online)

4.2 Analysis

SA is used in simulation in contrast with our proposed TS algorithm. To contrast
in the same computational and space complexity, instead of randomly modifying
one elements of the last accepted vector, we use a policy similar to TS algorithm
for modifying part of vectors in SA. The policy is, finding the best among its
neighboring vectors as the modified vector. For fair, the neighbor range comes
to be 4, the same as one of neighbor ranges of the TS algorithm simulation.

The parameters concerning the SA are: the initial temperature T = 3e − 3,
and the parameter T decreases by a scale factor η = 0.998 over iterations. If
the new value of the combined function F (p) is worse than the best so far, cal-
culate the relative difference between the two as the probability pr, and then
receive the new vector and the new value with a probability of pr. The parame-
ters concerning the TS are: the initial tabu period P = 5, the neighbor range
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r ∈ {4, 6, 8, 12}. Both algorithm begin with the solution vector with all SBSs’
power 24 dBm, and the maximum iteration is 30.

As different parameter settings have different influence on the performance of
TS algorithm, especially the neighbor range, in addition to contrast with SA, we
also compare the performance of different neighbor range. Figure 2 shows that,
for the same neighbor range of r = 4, our proposed TS algorithm has a signif-
icantly faster convergence in iteration than SA, while finally reach almost the
same near global optimum as the contrast approach with a gain of about 32%.
And the final optima of both algorithms aren’t locked into local. On the other
hand, we can notice the fact that TS algorithm converges faster under different
parameter settings from the perspective of the number of iterations. Neverthe-
less, higher neighbor range setting means more calculating in each iteration, so
the condition of r = 4 has the most convergent speed among all the simulation
conditions.

Our optimization function is a combined function of CCO. Figure 3 shows the
overall throughput of the ultra-dense small cell network. As can be seen from
the figure, TS algorithm converges quickly to a constant during the iteration,
achieving a gain of 21% capacity improvement. While SA approach only achieves
a gain of 15%, lower than the TS algorithm’s result. There is an obvious decline
in the curve of TS with r = 12. That is because that TS can accept a worse
solution than the best so far to avoid locking into local optima.

Figure 4 shows the Cumulative Distribution Function (CDF) of the UE
throughput in the cells of the final solution. The edge throughput is defined by
the one of the 5-tile% UEs’ throughput sequence sorting. As can be seen from
the figure, the average throughput and edge throughput both improve after the
optimization. Besides, on the point of 5-tile%, our proposed TS algorithm also
has better performance than the SA.

Fig. 2. Combined optimization performance for the TS and SA (Color figure online)
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Fig. 3. Overall throughput performance for the TS and SA (Color figure online)

Fig. 4. CDF for UE throughput before and after optimization via the TS and SA
(Color figure online)

5 Conclusions

This paper aims to optimize coverage and capacity in ultra-dense network. In
order to solve combinational optimization problem, especially when the dimen-
sion of the problem is really high and with large amount of data, we introduced
the TS algorithm for adjusting parameters under our proposed combined opti-
mization mathematical model. The TS algorithm begins with an initial solu-
tion vector and searching for the next solution in its neighborhood, particularly,
the algorithm marks some local optima as tabu and try to avoid but not com-
pletely prohibit them in later iterative searches. Simulation results show that
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our proposed optimization model can represent the performance of coverage
and capacity well and balance the two conflicting key performance indicators in
optimization. More importantly, our proposed TS algorithm improves the cover-
age and capacity performance significantly with low computational complexity,
which means the algorithm can be used for real-time optimization and real-
ize self-optimization for UDN. Besides, from the results obtained in simulation,
we can draw the conclusion that the TS algorithm outperforms the adaptive
SA approach in terms of convergence speed while achieving near global opti-
mum. Additionally, the TS algorithm proposed in this paper is applied under
fixed parameters. Therefore, modifying some parameters adaptive in optimizing
process may bring better solution while lowing the computational complexity.
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