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Abstract. In recent years, mobile devices (e.g., smartphones, tablets
and etc.) equipped with various inertial sensors have been increasingly
popular in daily life, and a large number of mobile applications have
been developed based on such built-in inertial sensors. In particular,
many of these applications, such as healthcare, navigation, and etc., rely
on the knowledge of whether a user is walking or not, so that walk-
ing detection thus has attained much attention. This paper deals with
walking detection by using the gyroscope of any commercial off-the-shelf
(COTS) smartphone, which can be placed at different positions of the
user. Inspired by the fact that the walking activity often results in notable
features in the frequency domain, we propose a novel algorithm based
on fast Fourier transformation (FFT) to identify the walking activity of
a user who may perform various activities and may hold the smartphone
in different manners. A thorough experiment involving three testers and
multiple activities is carried out and confirms that the proposed algo-
rithm is superior to the existing well-known counterparts.
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1 Introduction

Nowadays, with the development of Micro-electromechanical Systems (MEMS)
technologies, various low-cost inertial sensors have been integrated in almost
every commercial off-the-shelf (COTS) smartphone, and are playing a vital role
in a multitude of applications like gaming, navigation, augmented reality, and
etc. [1-5]. Therein, gait recognition through the built-in sensors of any smart-
phone, involving the estimation of the step count and step length, is receiving
increasing attention and has become a hot research topic. For instance, in the
fields of pedestrian navigation and tracking [6-9], pedestrian dead reckoning
(PDR) can be implemented on smartphones to improve positioning accuracy by
providing pedestrian displacement and orientation. Evidently, successfully iden-
tifying the phase of walking during consecutive activities is prerequisite to these
applications.

Therefore, many efforts have been invested on walking detection, but most
of existing studies were focused on either dedicated devices, e.g. foot-mounted
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inertial sensors, or smartphones with fixed placements. As a result, it is still
challenging to identify the walking activity by using unconstrained smartphones,
in the sense that the smartphone’s placement can be arbitrary to some extent.

In this paper, we deal with the problem of walking detection with uncon-
strained smartphones, and propose a robust and efficient walking detection algo-
rithm inspired by the fact that the gyroscope data obtained by a smartphone
shows notable cyclic features in most cases when its user is walking. Specifically,
the optimal axis is firstly selected from the three dimensional axes in the device
frame according to their respective amplitudes, the fast Fourier transformation
(FFT) technique is then adopted to derive the frequency-domain gyroscope data
in the optimal axis, and a sliding time window is applied to evaluate the ampli-
tudes of multiple frequencies within the current time window, so as to judge
whether the smartphone user is walking. A thorough experiment is carried out
by taking into account various activities of three testers. It is shown that the
overall performance of the proposed algorithm is superior to the existing best
walk detection algorithms.

The remainder of this paper is organised as follows. A brief review on related
works is presented in Sect.2. Section 3 introduces the proposed algorithm in
details and Sect. 4 reports the experimental results. Section5 finally concludes
this paper and sheds lights on future works.

2 Related Works

There is a wealth of studies on walk detection and step counting for smartphone
users in the literature, which can be categorized into time domain approaches,
frequency-domain approaches and feature clustering approaches. A thorough
survey can be found in [10].

The time domain approaches include thresholding [11], autocorrelation [12],
and etc. The thresholding method is simplest, but the difficulty lies in select-
ing optimal thresholds, especially for unconstrained smartphones. The auto-
correlation method detects the period directly in the time domain through eval-
uating auto-correlation, and is able to obtain good performance at relatively low
costs in comparison with frequency-domain approaches.

The frequency-domain approaches focus on the frequency content of suc-
cessive windows of measurements based on short-term Fourier transform
(STFT)[13] and continuous/discrete wavelet transforms (CWT/DWT) can gen-
erally achieve high accuracy, but suffer from either resolution issues or compu-
tational overheads.

The feature clustering approaches employ machine learning algorithms (e.g.
Hidden Markov models (HMMs) [14], KMeans clustering [15], and etc.) to
classify activities based on both time-domain and frequency-domain features
extracted from the measurements of inertial sensors [16].
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3 Method

Commonly, positions and attitudes of a smartphone often experience continuous
and dramatic changes when its user is conducting a series of activities, such
as walking, texting, calling, playing games and etc. Since different activities
result in different inertial measurements, activity recognition can be realized
to some extent by extracting unique features of different activities from such

measurements.
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Fig. 1. The flow diagram of the walk detection

Considering the fact that gyroscope is more sensitive and accurate than
accelerometer, and for cyclic activities like walking, the angular velocities sensed
by gyroscope often swing around zero, though most existing studies on walk
detection were carried out based on accelerations as mentioned previously, gyro-
scope is adopted in the proposed algorithm, the flow diagram of which is illus-
trated in Fig. 1.

As can be seen, the algorithm mainly involves three components, namely a
sliding time window, sensitive axis selection and a spectrum analysis, which will
be described in detail in what follows.
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3.1 Sliding Time Window

In order to continuously detect walking activities, the algorithm is designed based
on a sliding time window. As suggested in [17], the typical walking frequency
of human ranges between 0.6 Hz and 2 Hz; that is to say, the duration of the
walking activity approximately ranges between 0.5s and 1.6s. Therefore, the
time window should contain a sequence of data longer than 1.6 s and the sliding
step is around the duration of one stride.

Moreover, according to the Shannon sampling theorem, it is sufficient that
the sampling frequency is more than two times of the walking frequency. As
such, by trading off the energy consumption and minimal sampling frequency,
the sampling frequency of the sensors in the smartphone is set to be 20 Hz.

On these grounds, since the base-2 FFT algorithm will be adopted, let the
sizes of the time window and sliding step be 64 and 25, respectively, which are
equivalently 3.2s and 1.25s in the terminology of time.

3.2 Sensitive Axis Selection

Imagining that a smartphone user is required to perform an identical activity
repeatedly, it is true that the three axes of inertial measurements derived by the
gyroscope of the smartphone in the device reference frame demonstrate different
characteristics according to the position and attitude of the smartphone, and
thus play different roles in successfully identifying the user’s activity. Therefore,
it is of great importance to select the most sensitive axis in the sense that the
corresponding data is closely correlated with the activity, so as to improve the
performance of the recognition algorithms. Currently, an alternative approach
is to use the magnitude of the corresponding 3-dimensional (3D) inertial mea-
surements instead of the sensitive axis, but inevitably suffers from information
loss.

On the one hand, the measurements of the gyroscope incur constant bias,
thermo-mechanical white noise, flicker noise or bias stability, temperature effects,
and calibration errors (e.g. scale factors, alignments and output linearities). In
general, the measurement noises appear to be quite obvious when the mea-
surements are relatively small, and on the contrary, can be ignored when the
measurements are huge. Therefore, it is advisable to select the axis whose data
has the maximum magnitude. On the other hand, regarding the walking activity,
no matter where the smartphone is placed, certain cyclic features are involved
in all the three axes of measurements; that is to say.

Inspired by the above analysis, we come up with the following simple method
based on the absolute values of the 3-D angular velocities to select the sensitive
axis for the proposed walking detection

n
The most sensitive axis = max g |wa (2)] (1)
LL:l',y,Zi 1

where w, (i) denotes the angular velocity of the axis a with a = z,y, z at time ¢
within the current time window, and n is the size of the time window.
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3.3 Walking Detection

Based on the above step, the most sensitive axis is determined and the corre-
sponding measurements are fed into the process in this step.

In the first step, FFT is applied to transform the time-domain angular veloc-
ities in the most sensitive axis into the following frequency-domain data

X(k) = 3 wln)(e I ¥ ), @)

where k =0,1,..., N — 1, w() is the angular velocity in the most sensitive axis,
N denotes the number of the sampling points and equals to 64 in this case. The
frequencies can be calculated as follows

Fn:(n—l)*%7 (3)

where F), represents the frequency of the n-th point, and Fy is the sampling
frequency and equals to 20 Hz in our case.
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Fig. 2. Frequency-domain data obtained by FFT with respect to various daily activi-
ties. The dashed line denotes the amplitude at the frequency 0.9375 Hz.

In the second step, the frequency-domain data obtained through (2) is plotted
with respect to various activities performed by Testerl (see Table.1) in Fig. 2.
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As can be seen, the amplitudes at the frequencies in the vicinity of 0.9375 Hz are
obviously greater than the counterparts at the other frequencies provided that
the tester is walking with the smartphone placed at different positions (e.g. hand,
shirt pocket, and etc.), except that the smartphone is being operated regardless
of walking or not. Inspired by the observation, we propose to identify the walking
activity by comparing the amplitudes of different frequencies. To be specific, the
average amplitude within the typical walking frequencies (i.e. between 0.6 Hz
and 2Hz), denoted by w,., and that at the frequencies which fall outside of the
typical frequencies, denoted by w,, are evaluated respectively, and then, walking
is identified if the following condition is satisfied

e > @ (4)

As illustrated in Fig.2, when the holder is operating the smartphone (e.g.
walking and typing, walking and watching, and typing), the resulting ampli-
tudes are relatively small, reflecting that the smartphone is experiencing some
mild motions which might involve walking or not; however, in this situation, it
always happens that the condition in (4) is satisfied such that incorrect detection
results are returned. Therefore, another condition is imposed by thresholding the
average amplitude as follows

we > 14, (5)

where the lower bound 14 is experimentally determined and does not change.
To sum up, if and only if the conditions (4) and (5) are simultaneously satis-
fied, the current activity of the smartphone holder is identified to be walking. It is
noticeable, the proposed algorithm cannot detect the walking activity when the
smartphone is being operated by its holder due to the aforementioned analysis.

4 Experimental Results

In this section, an thorough experiment is reported to confirm the effectiveness
of the proposed walk detection algorithm.

4.1 Setup

In the experiment, a smartphone (RedMi Note 2) running Android 5.0.2
LRX22G was adopted to collect measurements of gyroscope at the frequency
of 20 Hz, and three testers with different heights, step lengths and genders were
invited to continuously perform a predefined sequence of different daily activities
including the walking activity along a corridor. The detailed information of the
three testers is shown in Table 1. Specifically, the daily activities included in the
experiment are shown in Table 2. In order to better distinguish all these activities
during each trial, a video camera is used to record the whole procedure.

In order to verify the performance of the proposed algorithm (denoted
by FFT), another two walking detection algorithms are performed in the
experiment. The first one, denoted by STD_TH, belongs to the time-domain
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Table 1. Subjects and their characters in the experiment

Gender | Height(cm) | Step length(cm)
Testerl | Male 176 130
Tester2 | Male 184 151
Tester3 | Female | 159 88

Table 2. The symbols and the corresponding daily activities

wn
<
=
o
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Daily activities

Standing with the smartphone in the trousers’ front pocket

Picking up the smartphone

Standing with the smartphone in the palm

Walking with the smartphone in the swinging hand

Standing and typing

Walking with the smartphone in the trousers’ front pocket

Walking with the smartphone in the shirt pocket

o QHEE g Q E =

Standing with the smartphone in the shirt pocket

approaches, and is implemented by thresholding the standard deviation of accel-
erations [11]. The other one, denoted by STFT, belongs to the frequency-domain
approaches, and relies on STFT and accelerations [13]. Both of the algorithms
were validated to be best among many existing algorithm for detecting the walk-
ing activity with an unconstrained smartphone [10].

The parameter values of all the three algorithms for comparison are listed
in Table3. As can be seen, f represents the length of FFT, w is the length of
the apodization window (Hanning), dft,;, and std,;, are the size of the sliding
step, dft;, is the threshold of spectral energy and stdy; is the threshold of the
standard deviation for the acceleration magnitudes.

Table 3. Parameter values

Algorithm | Frequency /time | Window size (s) | Step size (s) | Threshold
FFT Frequency 3.2 1.25 14

STFT Frequency 3 0.7 20
STD_TH |Time 1.25 1.25 0.74

4.2 Performance Evaluation

In the first place, the results of the three walking detection algorithms associated
with the three testers are illustrated in Figs.3, 4 and 5, respectively, where
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Fig. 5. The results of walking detection associated with tester3

symbols A-H define the corresponding activities listed in Table 2, the blue solid
lines reflect the detection results and the other curves denote the measurements
adopted by the corresponding algorithms. Specifically, if one tester is identified
to be walking during a period of time, the corresponding blue solid line will be
drawn in the upper side; otherwise, it is drawn in the lower side.

As can be seen, unlike the algorithms of STD_TH and STFT, the propose
algorithm (i.e. FFT) seldom identify other activities into the walking activity,
revealing that the proposed algorithm is more robust than the other two algo-
rithms.

In the second place, in order to have a more clear knowledge about the per-
formance of the proposed algorithm, precision (P) and recall (R) are calculated
as follows:

TP
Precision = ——— x 1
recision TP+ D x 100% (6)
T
Il=—-—x1
Reca TPIEN x 100% (7)

where TP is the true positive duration of walking, FP is the false positive dura-
tion of walking and FN is the false negative duration of walking. The precision
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Table 4. Experimental results for different testers

Tester | FFT STD_TH STFT

P(%) | R(%) P(%)|R(%) | P(%) | R(%)
Userl 194.7992.15 | 75.99 | 87.72 | 84.04 | 95.94
User2 1 89.44 1 90.7 |73.31/91.69 | 77.56 | 95.92
User3 |95.83199.11 | 68.06 | 93.16 | 85.23 | 98.73
Total 93.49 |94.1 |72.19|90.83 | 82.33 | 96.90

and recall are listed in Table4. As can be seen, the proposed algorithm outper-
forms STD_TH in both precision and recall, and is slightly worse than STFT in
precision but is significantly better in recall. To sum up, the proposed algorithm
is able to achieve superior overall performance in comparison with the other two
algorithms which were shown to be best.

5 Conclusion

In this paper, we proposed an efficient and robust walking detection algorithm
for users with unconstrained smartphones. Unlike most existing solutions relying
on accelerometer, gyroscope is adopted for walking detection. The algorithm was
developed based on the sliding time window. At any time window, one most sen-
sitive axis among the 3-D measurements are selected according to their absolute
values, the corresponding measurements are then quickly transformed into fre-
quency domain through FFT, and a spectrum analysis is conducted to judge
whether the user is walking within the time window. Finally, a thorough exper-
iment was carried out and confirmed the superiority of the proposed algorithm
in comparison with the other two algorithms which had been verified to be best.

Regarding future works, we would like to take into account the following
problems. First, we plan to continue studying on improving the accuracy of
the walking detection algorithm. Second, besides walking detection, we would
like to work on movement detection which is contributable to localization and
navigation via smartphones.
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