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Abstract. In this letter, a wireless cooperative network is considered, in
which multiple source-destination pairs communicate with each other via
an energy harvesting relay. We propose a price-based power allocation
scheme to distribute the harvested energy among the multiple users.
We model the interaction between the relay and the destinations as a
Stackelberg game and then study the joint utility maximization of the
relay and the destination. The Stackelberg equilibriums for the proposed
game are characterized. Simulation results show the effectiveness of the
proposed algorithm in comparison with the uniform pricing algorithm.
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1 Introduction

With rapid growth of wireless services in recent years, issues in energy consump-
tion become increasingly critical for wireless communication systems. There-
for energy harvesting, a technique to collect energy from the environment, has
recently received considerable attention as a sustainable solution to overcoming
the bottleneck of energy constrained wireless networks [1]. Unlike conventional
energy harvesting techniques rely on external energy sources such as solar and
wind [2], ambient radio signal can also be a practicable source since radio signal
carries energy as well as information at the same time, so that wireless signals can
be used as a means for the delivery of information and power simultaneously [3].
The work [4] investigated the optimal information/energy beamforming strategy
to achieve the maximum harvested energy for multi-user MISO SWIPT system
with separated information/energy receivers. SWIPT for relay system and mul-
tiple access channel was consider in [5]. The problem in such energy harvesting
networks is that practical circuits cannot realize energy harvesting and data
detection from wireless signals at the same time. In [6], the authors introduced
a general receive architecture, in which the circuits for energy harvesting and
signal detection are operated in a time sharing or power splitting manner. The
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performance difference between power splitting and time sharing is studied in
broadcasting scenarios in [7]. In a power splitting scheme, the received signal
is split with an adjustable power splitting ratio to enable simultaneous energy
harvesting and information decoding.

In this paper, we consider a general wireless cooperative network, where
multiple source-destination pairs communicate with each other via an energy
harvesting relay. Specifically, the cooperative transmission consists of two time
slots of duration T

2 . In the first slot, multiple sources deliver their information to
the relay via orthogonal channels. At the end of the first phase, the relay splits
the signals sent from the i-th source into two streams, one for detection and the
other for energy harvesting. Then in the second phase, the relaying transmissions
are power by the energy harvested at the relay. The relay’s strategies to distribute
the harvested energy among the multiple users are investigated in [8], e.g., the
noncooperative individual transmission strategy and the equal allocation scheme.
In this letter, we propose a new price-based power allocation scheme, where the
relay price the destinations to control the transmission power under the total
transmit power constraint. The relay will choose a suitable price to maximize
its revenue from the destinations. The destination will choose an optimal power
to maximize its utility after the relay set prices for them. A Stackelberg game
is formulated to model the strategy between the relay and the destinations and
we study the Stackelberg equilibriums for the proposed power allocation game.

Notations: Boldface capital and lowercase letters denote matrices and vectors,
respectively. The inequalities for vectors are defined element-wise, i.e., x � y
represents xi ≤ yi,∀i, where xi and yi are the i-th elements of the vector x and
y, respectively. The superscript T denotes the transpose operation of a vector.

2 System Model and Problem Formulation

Consider an energy harvesting communication scenario, where N source nodes
(Si, for i = 1, ..., N) intended to communicate with their respective destination
nodes (Di, for i = 1, ..., N) through an intermediate relay node (R). Each node
is equipped with a single antenna. For simplicity, we assume that channel state
information (CSI) of each link is perfectly known to the relay. Further, the relay
nodes are operate in the half-duplex mode with two transmission phases. Among
the various energy harvesting relaying models, we focus on power splitting. Let
θi denote the power splitting coefficient for Si at R. At the end of the first phase,
R harvests the following amount of energy from Si:

Ei = ηPSi
hi,jθi

T

2
, (1)

where η denotes the energy harvesting efficiency factor, PSi
denotes the trans-

mission power at Si, hi denotes the channel power gain between Si and R.
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Then the total power reserved at the relay at the end of the first phase is:

PR =
N∑

i=1

Ei

T
2

=
N∑

i=1

ηPSi
hiθi

T

2
, (2)

Assuming that the battery is sufficiently large, the relay can accumulate a
significant amount of power for relaying transmission. We focus on the strategy to
distribute the harvested energy among the multiple users. The strategy between
the relay and the multiple users is modeled as a Stackelberg game. The relay
is the leader in this game. It choose a price on per transmission power for each
destination to maximize its own revenue. Then the destinations will decide the
transmit power to maximize their utilities based on the assigned power price.

Let λi denotes the price paid to R on per transmission power for Di. The
total revenue of the relay can be expressed as:

UR =
N∑

i=1

λipi, (3)

where pi denotes the transmission power allocated to Di at the relay. Let λ =
[λ1, λ2, · · · , λN ]T . The problem of the relay is formulated as:

max
λ�0

UR =
N∑

i=1

λipi,

s.t.
N∑

i=1

pi ≤ PR,

pi ≥ 0. (4)

The data rate Di can achieve is RDi
= 1

2 log2(1+ pigi

σ2
i

), where pi denotes the
channel power gain between R and Di, and σ2

i denotes the background noise at
Di. Without loss of generality, it is assumed for convenience that σ2

i = σ2,∀i.
The utility for Di can be defined as:

UDi
=

1
2
ωi log2(1 +

pigi

σ2
) − λipi, (5)

where ωi denotes the equivalent utility per unit data valuation contributing to
Di’s utility. Let p = [p1, p2, · · · , pN ]T . The problem for Di is formulated as:

max
pi≥0

UDi
=

1
2
ωi log2(1 +

pigi

σ2
) − λipi. (6)

The problem (4) and (6) together form a Stackelberg game in which R is the
leader. The objective is to find the Stackelberg Equilibrium (SE) point(s).
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3 Optimal Price-Based Power Allocation Algorithm

For the proposed Stackelberg game, the SE is defined as follows.

Definition 1: Let λ∗ be a solution for problem (4) and p∗
i be a solution for

problem (6) of Di(i = 1, ..., N). The point (λ∗,p∗) is a SE for the addressed
game if for any (λ,p) with λ � 0 and p � 0, the following conditions are
satisfied:

UR(λ∗,p∗) ≥ UR(λ,p∗), (7)

UDi
(p∗

i ,p
∗
−i,λ

∗) ≥ UDi
(pi,p∗

−i,λ
∗),∀i. (8)

The SE can be obtained as follows: For a given λ, problem (6) is solved first.
Then, the optimal price of problem (4) can be obtained with the optimal power
allocated strategy p∗

i .
Recall problem (6), it is observed that the objective function is a concave

function with the allocated power pi, and the constraint is affine. Thus, problem
(6) is a convex optimization problem. Therefore, we can solve the problem by
using the KKT conditions.

Lemma 1: For a given price λi, the optimal solution for problem (8) is given by:

p∗
i = (

1
2ωi

λi
− σ2

gi
)+,∀i, (9)

where (·)+ � max(·, 0).

From (9), the power allocated to Di is zero if the price for Di is too high, i.e.,
λi ≥ 1

2ωigi

σ2 . This means that Di will be removed from the game. Substituting
(9) into problem (4):

max
λ�0

N∑

i=1

(
1
2
ωi − λiσ

2

gi
)+,

s.t.
N∑

i=1

(
1
2ωi

λi
− σ2

gi
)+ ≤ PR. (10)

Assume PR is large enough so that all the destinations are involved, i.e.,
λi <

1
2ωigi

σ2 ,∀i. Then problem (10) can be transformed to the following form:

min
λ�0

N∑

i=1

λiσ
2

gi
,

s.t.
N∑

i=1

1
2ωi

λi
≤ PR +

N∑

i=1

σ2

gi
. (11)
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Obviously, this problem is convex. Next, we will give the optimal solution to
problem (11).

It is observed that problem (11) is a convex optimization problem. Thus,
there is no duality gap between this problem and its dual optimization problem.
Therefor, problem (11) can be solved by its dual problem.

The Lagrangian function of problem (11) is given as:

L(λ, α,β) =
N∑

i=1

λiσ
2

gi
+ α(

N∑

i=1

1
2ωi

λi
− PR −

N∑

i=1

σ2

gi
)

−
N∑

i=1

βiλi, (12)

where α and βi are non-negative dual variables associated with the constrains∑N
i=1

1
2ωi

λi
≤ PR +

∑N
i=1

σ2

gi
and λi ≥ 0.

The dual objective is then defined as G(λ, α,β) = maxλ�0 L(λ, α,β), and
the dual optimization problem is given by minα≥0,β�0 G(λ, α,β). Then, KKT
conditions are given as follows:

∂L(λ, α,β)
∂λi

=
σ2

gi
− α

1
2ωi

λ2
i

− βi = 0,∀i, (13)

α(
N∑

i=1

1
2ωi

λi
− PR −

N∑

i=1

σ2

gi
) = 0, (14)

α ≥ 0, βi ≥ 0, λi ≥ 0, βiλi = 0,∀i, (15)

N∑

i=1

1
2ωi

λi
− PR −

N∑

i=1

σ2

gi
≤ 0. (16)

From (13), we have:

λ2
i = α

1
2ωi

σ2

gi
− βi

,∀i. (17)

Lemma 2: βi = 0,∀i.

Proof: We prove it by contradiction. Assume that βi �= 0 for any arbitrary i.
Then, from βiλi = 0 in (15), we have λi = 0. Substituting it into (17), we have
α = 0 since ωi > 0. Then, from (17), it follows that λi = 0,∀i, which contradicts
(16), and thus we have βi = 0,∀i. �

Lemma 3:
∑N

i=1

1
2ωi

λi
− PR − ∑N

i=1
σ2

gi
= 0.
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Proof: We prove it by contradiction. Assume that
∑N

i=1

1
2ωi

λi
−PR−∑N

i=1
σ2

gi
�= 0.

Then from (14), we have α = 0. Then, from (17), it follows that λi = 0,∀i, which
contradicts (16), and thus we have

∑N
i=1

1
2ωi

λi
− PR − ∑N

i=1
σ2

gi
= 0. �

According to Lemma 2, (17) can be rewritten as λi =
√

1
2ωigiα

σ2 ,∀i. Substitut-

ing it into (16) and according to Lemma 3, we have
√

α =
∑N

i=1

√
1
2 ωiσ2

gi

PR+
∑N

i=1
σ2
gi

. Thus,

we have:

λi =

√
1
2ωigi

σ2

∑N
i=1

√
1
2ωiσ2

gi

PR +
∑N

i=1
σ2

gi

,∀i. (18)

With the results obtained above, we give the optimal solution for problem
(11) by the following proposition.

Proposition 3: The optimal solution to problem (11) is given by

λ∗
i =

√
1
2ωigi

σ2

∑N
i=1

√
1
2ωiσ2

gi

PR +
∑N

i=1
σ2

gi

,∀i ∈ {1, 2, · · · , N}. (19)

Now, we relate the optimal solution of problem (11) to that of the original
problem (10) in the following proposition.

Proposition 4: The power prices given by (19) are the optimal solutions of prob-

lem (10) if and only if PR >

∑N
i=1

√
1
2 ωiσ2

gi

mini

√
1
2 ωigi

σ2

− ∑N
i=1

σ2

gi
.

Proof: Sufficiency Part: It is observed that the price vector λ∗ given by (19)
is the optimal solution of problem (10) if λi <

1
2ωigi

σ2 ,∀i ∈ {1, 2, · · · , N}. Sub-

stituting (19) into these inequalities yields
√

1
2ωigi

σ2

∑N
i=1

√
1
2 ωiσ2

gi

PR+
∑N

i=1
σ2
gi

<
1
2ωigi

σ2 ,∀i ∈

{1, 2, · · · , N}. Thus, it follows that PR >

∑N
i=1

√
1
2 ωiσ2

gi√
1
2 ωigi

σ2

− ∑N
i=1

σ2

gi
,∀i ∈

{1, 2, · · · , N}. Furthermore, the inequalities given above can be compactly
written as:

PR >

∑N
i=1

√
1
2ωiσ2

gi

mini

√
1
2ωigi

σ2

−
N∑

i=1

σ2

gi
. (20)

Necessity Part: We prove it by contradiction. Assuming that destinations are
sorted by the following order:

1
2ω1g1

σ2 > · · · >
1
2ωN−1gN−1

σ2 >
1
2ωN gN

σ2 . Then, in
Proposition 4, the condition becomes:
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PR > TN , TN =

∑N
i=1

√
1
2ωiσ2

gi√
1
2ωN gN

σ2

−
N∑

i=1

σ2

gi
. (21)

Now, suppose TN−1 < PR ≤ TN , where TN−1 is a threshold shown later
in (24). Suppose that λ∗ given by (19) is still optimal for Problem (10) with
TN−1 < PR < TN . Then, since PR ≤ TN , from (19) it follows that λ∗

N ≥ 1
2ωN gN

σ2

and thus (
1
2ωN

λN
− σ2

gN
)+ = 0. From Problem (10) it then follows that λ∗

1, · · · , λ∗
N−1

is the optimal solution of the following problem:

max
λ�0

N−1∑

i=1

(
1
2
ωi − λiσ

2

gi
)+,

s.t.
N−1∑

i=1

(
1
2ωi

λi
− σ2

gi
)+ ≤ PR. (22)

This problem is similar to Problem (10). Thus, from the proof of the previous
sufficiency part, we can show that the optimal solution for this problem is given
by:

λ∗
i =

√
1
2ωigi

σ2

∑N−1
i=1

√
1
2ωiσ2

gi

PR +
∑N−1

i=1
σ2

gi

,∀i ∈ {1, 2, · · · , N − 1}, (23)

if PR > TN−1, where TN−1 is obtained as the threshold for PR above which
λ∗

i <
1
2ωigi

σ2 holds ∀i ∈ {1, 2, · · · , N − 1}, i.e.,

TN−1 =

∑N−1
i=1

√
1
2ωiσ2

gi√
1
2ωN−1gN−1

σ2

−
N−1∑

i=1

σ2

gi
. (24)

Obviously, the optimal power price solution in (23) for the above problem is
different from that given by (19). Thus, this contradicts with our presumption
that λ∗ is optimal for Problem (10) with TN−1 < PR ≤ TN . �

Therefore, the optimal solution of problem (10) can be given by the following
theorem.

Theorem 1: Assuming that all the destinations are sorted in the order
1
2ω1g1

σ2 >

· · · >
1
2ωN−1gN−1

σ2 >
1
2ωN gN

σ2 , the optimal solution for problem (10) is given by:
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λ∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qN [
√

1
2ω1g1

σ2 ,

√
1
2ω2g2

σ2 , · · · ,

√
1
2ωN gN

σ2 ]T ,

if PR > TN

qN−1[
√

1
2ω1g1

σ2 , · · · ,

√
1
2ωN−1gN−1

σ2 ,∞]T ,

if TN ≥ PR > TN−1

...

q1[
√

1
2ω1g1

σ2 ,∞, · · · ,∞]T ,

if T2 ≥ PR > T1

(25)

where qK =
∑K

i=1

√
1
2 ωiσ2

gi

PR+
∑K

i=1
σ2
gi

and TK =
∑K

i=1

√
1
2 ωiσ2

gi√
1
2 ωK gK

σ2

− ∑K
i=1

σ2

gi
,∀K ∈

{1, 2, · · · , N}.

Proof: If PR > TN , the optimal λ∗ is readily obtained by Proposition 3. For
other intervals of PR, e.g., TN−1 < PR ≤ TN , the proof of the optimality for the
corresponding λ∗ can be obtained similarly as Proposition 3. �

Now, the proposed Stackelberg game is completely solved. And the SE for
this game is then given by the following proposition.

Proposition 5: The SE for the Stackelberg game formulated in problem (4) and
(6) is (λ∗,p∗), where λ∗ is given by (25), and p∗ is given by (9).

4 Simulation Results

In this section, computer simulations will be carried out to evaluate the per-
formance of the proposed power allocation protocol described in the previous
sections. For simplicity, we assume that the variance of the noise is 1, and the
payoff factors ωi,∀i are all equal to 2.

An wireless cooperative network with one energy harvesting relay and three
user pairs is considered. Without loss of generality, the channel power gains are
chosen as follows: g1 = 10, g2 = 1, g3 = 0.1.

Now, we compare the system performance obtained by the price-based power
allocation algorithm with the uniform pricing algorithm proposed in [9]. In Fig. 1,
we present the total income of the relay versus the total energy harvested at it.
It is observed that the revenue of the relay increases as PR increases in both
tow algorithms. This is because that the pricing strategies for the relay increases
as the available energy increases. And for the same available power PR, the
revenues of the relay under the price-based power allocation algorithm are more
than the uniform pricing algorithm. In addition, when PR is sufficiently small,
the revenues of the relay under the tow pricing schemes are identical. It is because
that when PR is very small, there is only one destination active in this game, and
thus the proposed price-based algorithm is same as the uniform pricing scheme.
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Fig. 1. Revenue of the relay vs. PR

5 Conclusions

In this letter, we have studied a power allocation strategies for a cooperative net-
work in which multiple user pairs communicate with each other via an energy
harvesting relay. And we propose a price-based power allocation scheme to dis-
tribute the harvested energy among the multiple users. The Stackelberg game
model is adopted to investigate the joint utility maximization of the relay and
the destination, closed-form solutions are obtained for the strategy proposed.
Compared with the uniform pricing algorithm, simulation results show that the
proposed price-based algorithm improves the revenue of the relay for all the
available power PR.
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