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Abstract. In mobile ad hoc networks, nonparametric belief propagation
(NBP) algorithm is a promising cooperative localization scheme because
of high accuracy, applicability to non-Gaussian uncertainty. However,
the high computational cost limits the application of NBP. To solve
the problem, an efficient and practical NBP-based cooperative local-
ization scheme is proposed. In the scheme, the issues of anchor node
selection, node mobility and non-Gaussian uncertainty are considered.
Firstly, anchor nodes are selected based on a distributively clustered net-
work. Then the cooperative localization process is performed, in which
a practical ranging error model is employed. Moreover, to mitigate the
influence of node mobility, the re-selection process of anchor nodes is
conducted when necessary. The simulation results demonstrate the effi-
ciency of the proposed scheme in improving the positioning accuracy and
reducing the computational cost compared with the conventional NBP
method.
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Ranging error model

1 Introduction

In mobile ad hoc networks (MANETs), accurate positioning information is cru-
cial since it enables a wide variety of applications, such as emergency services,
first responders operations and factory automation [1,2]. In typical localization
schemes, nodes in a MANET can be divided into anchor nodes, which have
known positions and account for a small proportion in the nodes, and agent
nodes that need to be located by utilizing the information from anchor nodes.

Generally, the existing range-based localization schemes can be classified
into non-cooperative schemes and cooperative schemes. In the non-cooperative
schemes [1], an agent node is located only depending on the measured distances
with neighboring anchor nodes. For the cooperative schemes, by contrast, agent
nodes estimate their positions through ranging and exchanging information with
neighboring nodes, including anchor nodes and other agent nodes. Cooperation
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among the agent nodes is highly beneficial for improving the performance of
localization processes on accuracy and coverage [1]. Lately, extensive works have
been focused on cooperative localization [3–7], and most of these schemes are
based on belief propagation (BP) algorithm and its extension algorithms [3,6]
for high accuracy and distributed implementation. BP is an efficient message-
passing method of estimating the a posterior marginal probability density func-
tion (PDF) for the positions of the agent nodes in the network, but the inability
in resolving non-Gaussian uncertainty, which is a common occurrence in practi-
cal localization scenarios, limits the application of BP. As an extension of BP,
nonparametric belief propagation (NBP) algorithm [3] is sample-based and can
be applied in the positioning systems with non-Gaussian uncertainties. How-
ever, considerable complexity and communication overhead are associated with
the employment of NBP in MANETs. Many works have been proposed to reduce
the complexity of NBP. In [4], a minimum spanning tree approach is proposed
to mitigate the influence of loops in message passing process. In [5], the commu-
nication overhead and the computational cost are reduced by passing approx-
imate beliefs represented by Gaussian distributions. In addition, a space-time
hierarchical-graph model is proposed in [6] that messages propagates by layers
to achieve decrease in computational complexity.

However, many of the proposed NBP-based schemes are validated with sim-
plified assumptions such as static network [4] and Gaussian uncertainty [7]. In
MANETs, where nodes are all mobile and randomly deployed, achieving a rea-
sonable distribution of anchor nodes is advantageous in enhancing the perfor-
mance of localization processes [8] and should be performed in distributed way.
Moreover, considering a practical ranging error model is necessary and of great
importance when designing an efficient and practical localization scheme [5].

To address the problems mentioned, an efficient and practical NBP-based
cooperative localization scheme is proposed. In the scheme, anchor node selec-
tion is considered firstly, nodes in the network are aggregated into clusters in
a distributed manner and anchor nodes are selected based on the established
clusters. Then the cooperative localization process is performed. Considering
the influence of node mobility, the re-selection process of anchor nodes is con-
ducted when needed. Furthermore, a practical ranging error model is employed
in the scheme with the propose of enhancing the performance of the localiza-
tion process. The results of the simulations verify that the proposed scheme can
significantly improve the positioning accuracy and evidently reduce the com-
putational cost of the localization process in comparison with the conventional
NBP algorithm.

2 Preliminaries

2.1 Ranging Error Model

In range-based positioning systems, ranging errors usually obey some kind of dis-
tribution. Reasonable modeling of the ranging errors can be beneficial in mitigat-
ing the influence of ranging noises. However, many existing localization schemes
are validated using simulations based on simplified ranging error models such as
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the Gaussian ranging error model. In [5], based on the collected ranging data
from a real positioning system, a range-dependent asymmetric double exponen-
tial model is proposed. And in our previous experimental work, we observed a
kind of similar distribution, which is strictly non-Gaussian and long tailed on
the right hand side, when using an ultra-wideband based positioning system. In
this paper, the ranging error model proposed in [5] is adopted.

2.2 Network Model

We consider a two-dimensional MANET composing of N mobile nodes (Na

anchor nodes and Nt agent nodes), which are randomly deployed. Initial position
of each node is known and the position of node nu is denoted as xu=[xu, yu]T.

Considering the transmission radius R of each node and the actual distance
between nodes, Po(xu,xu′) can be achieved to denote the probability of whether
nu and nu′ can detect each other or not

Po(xu,xu′) = exp (−||xu − xu′ ||2/2R2), (1)

where ||xu −xu′ || is the Euclidean distance between nu and nu′ . We use a binary
variable ouu′ = 1 to denote the situation that nu and nu′ can detect each other
and are neighbor nodes, then a noisy distance measurement can be obtained

duu′ = ||xu − xu′ || + vuu′ , (2)

where vuu′ is the range error. Following [3], potential functions are used to repre-
sent the joint posterior PDF for the locations of all the nodes. For nu, the single
potential function ψu(xu) is defined as corresponding a prior distribution p(xu).
If ouu′ = 1, the pairwise potential function defined over nu and nu′ is given by

ψuu′(xu,xu′)=Po(xu,xu′)pv(duu′ , duu′−||xu−xu′ ||), (3)

where pv is the ranging error model. Only the single-hop neighbor nodes are
considered in localization process. Therefore, when ouu′ = 0, corresponding
ψuu′(xu,xu′) = 0. Then the joint posterior PDF for the locations of all the
nodes is denoted as

p(x1, ...,xN |{ouu′ ,duu′})∝
N∏

u=1

ψu(xu)
∏

u′∈Γu,u

ψuu′(xu,xu′), (4)

where Γu denotes the neighbor node set of node nu. For each node nu, by mar-
ginalizing this PDF, we can obtain the corresponding position which is charac-
terized by the posterior marginal PDF p(xu|{duu′}), where {duu′} is the set of
the distances between node nu and its neighbor nodes.

3 Proposed Scheme

3.1 Anchor Node Selection Phase

In the network, the distribution of anchor nodes influences the performance of
localization process [1]. For the previously mentioned MANETs, the issue of
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selecting anchor nodes with reasonable distribution is quite challenging, espe-
cially without a central controller of the whole network.

Cluster Formation Process. To achieve a reasonable distribution of anchor
nodes, firstly, all the nodes in the network are clustered distributively. Affinity
propagation clustering algorithm [9] is a distributed clustering scheme and only
relies on the similarity s(u, u′) between node nu′ and node nu. The negative
value of the distance between nu and nu′ is used as s(u, u′). After the clustering
process, all the nodes are aggregated into several clusters, and the cluster header
node (CH) of each cluster is responsible for anchor node selection process.

Anchor Node Selection Process. In [8], an optimal anchor node selection
algorithm is proposed to select three existing anchor nodes for each agent node.
Inspired by this work, based on the clustered network, we consider selecting
three nodes implementing an approximate regular triangle in each cluster to act
as anchor nodes. The selection process is conducted by CH of each cluster and
bases on the gathered positions of the nodes in the cluster.

In cluster C, the number of nodes is NC , Ci (i = 1, ..., NC) represents the
i-th node, the centroid is represented as o and dio denotes the distance between
Ci and o. In addition, the set of the distance between o and each node in C is
denoted as Sd, the median value and the maximum value in Sd are dm and dmax.

In each cluster C, if the distance between o and node Ci is between dm and
(dm + dmax)/2, node Ci is selected. Any three selected nodes Ci1 , Ci2 , Ci3 can
form a triangle, whose area can be calculated with Heron’s formula

Areatri =
√

p(p − di1i2)(p − di2i3)(p − di3i1), (5)

where p = (di1i2 + di2i3 + di3i1)/2; dijik (j, k = 1, 2, 3, j �= k) denotes the
distance between node Cij and Cik . Suppose a triangle, the distances between
o and its vertexes are assigned as di1o, di2o, di3o, keeping o inside the triangle,
the maximum area of the triangle can be achieved when it is a regular triangle

Areamax =
3
√

3
4

× (
di1o + di2o + di3o

3
)2. (6)

To evaluate how approximate the triangle composed of Ci1 , Ci2 , Ci3 is to the
equilateral triangle, approximation ratio λ is introduced and denoted as

λ = Areatri/Areamax, (7)

the three nodes with the largest λ are selected as anchor nodes.

Anchor Node Re-selection Process. Since nodes in the network keep mov-
ing, the topology of the network is influenced dynamically and randomly. From
the perspective of positioning accuracy, anchor nodes may not be suitable for the
localization process all the time, the anchor node re-selection process should be
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introduced to mitigate the influence of node mobility. When the number of agent
nodes, which are not well located in the localization process, reaches a predefined
threshold, the re-selection process of anchor nodes begins. In the process, based
on the estimated locations of agent nodes and the real positions of anchor nodes,
clustering process is performed again and new anchor nodes are selected using
the anchor node selection algorithm.

3.2 NBP-Based Cooperative Localization Scheme

NBP Implementation. With the defined statistical framework in Section II
and the selected anchor nodes, NBP is utilized to estimate the locations of the
agent nodes with two updating rules, namely the belief updating rule and the
message updating rule. The belief (or the estimated posterior distribution of
the position) of agent node nt in the l-th iteration is computed by taking a
product of the local potential ψt(xt) with the messages from the neighbor nodes
participating the localization process of nt

b
(l)
t (xt) ∝ ψt(xt)

∏
nu∈Γt

m
(l)
ut (xt), (8)

where Γt denotes the neighbor nodes participating the localization process of nt;
m

(l)
ut (xt) is the message from neighbor node nu, which can be anchor node or

agent node, to nt. In the l-th iteration, the message sent from agent node nt′ is

m
(l)
t′t(xt) ∝

∑

xt′

ψtt′(xt,xt′)
b
(l−1)
t′ (xt′)

m
(l−1)
tt′ (xt′)

, (9)

and the message from anchor node na is given by m
(l)
at (xt) ∝ ψat(xa,xt).

In NBP, stochastic approximations are used when computing the belief and
the message: for node nu (nu∈Γt), firstly, samples are drawn from the belief
b
(l−1)
u (xu), and these samples are used to approximate the message m

(l)
ut (xt)

sent to agent node nt. In the l-th iteration, weighted samples {x(lj)
u , ω

(lj)
u }M

j=1

are drawn from the belief b
(l−1)
u (xu), each sample x(lj)

u is moved in a random
direction θ

(lj)
ut by a noisy measurement d

(lj)
ut of the distance between nu and nt

x(lj)
ut = x(lj)

u + d
(lj)
ut · [sin(θ(lj)ut ), cos(θ(lj)ut )]T , (10)

where d
(lj)
ut = ‖xu − xt‖ + v

(lj)
ut , v

(lj)
ut ∼pv; θ

(lj)
ut ∼U [0, 2π]. The weight of x(lj)

ut is

ω
(lj)
ut =

ω
(lj)
u Po(x

(lj)
u ,xt)

m
(l−1)
tu (x(lj)

u )
. (11)

Modifications Based on NBP. To decrease the complexity of NBP, modifica-
tions are considered. In the localization process of agent node nt, only when there
are no less than three reference nodes (anchor nodes or located agent nodes),
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Algorithm 1. NBP-based cooperative localization scheme for agent nodes
Input: Γr: the reference node set of nt;

{d′
rit}|Γr|

i=1 : range measurements between nt and reference nodes.
Output: x̂t: the final estimated position of nt.

1 Initialization: Set [θri,1
min, θri,1

max] for reference node nri (i = 1, ..., |Γr|) as [0, 2π];
2 for iteration l = 1 to L do
3 Message computing in each reference node nri :

4 Draw random values {v
(lj)
rit , θ

(lj)
rit }M

j=1: v
(lj)
rit ∼ pv, θ

(lj)
rit ∼ U [θri,l

min, θri,l
max];

5 Calculate x
(lj)
rit with (12), and set corresponding weight ω

(lj)
rit as 1/M ;

6 Broadcast message {x(lj)
rit , θ

(lj)
rit , ω

(lj)
rit }M

j=1 to nt;

7 Belief computing in nt:

8 for each sample {x(lj)
rit , θ

(lj)
rit ,ω

(lj)
rit } received by nt do

9 Update the weight ω
(lj)
rit with (13);

10 for i = 1 to |Γr| do
11 Filter M/|Γr| samples with maximum weights from samples from nri ;
12 Get the range [θmin, θmax] of the directions in reserved samples;

13 Update [θri,l+1
min , θri,l+1

max ] of nri as [θmin, θmax];

14 Normalize the weights of remaining samples with ω
(lk)
t = ω

(lk)
t /

∑M
k=1 ω

(lk)
t ;

15 Update the belief b
(l)
t of nt using (8);

16 Calculate the estimated position
̂

x
(l)
t of nt with (15);

17 if l > 1 then
18 Check the convergence condition using (16);
19 if converged or l == L then

20 Set
̂

x
(l)
t as the final estimated position x̂t;

21 Terminate the iteration process.

in the neighboring node set Γt of nt, can nt locate itself by ranging with the
reference nodes, and it will become a reference node for other agent nodes when
well located. In this way, all the agent nodes are located incrementally.

Specifically, the generation principle (10) of samples is changed as

x(lj)
rt = xr + d

(lj)
rt · [sin(θ(lj)rt ), cos(θ(lj)rt )]T , (12)

where if reference node nr is an anchor node, xr is the real position of nr,
and otherwise xr is the estimated position. Through storing the random direc-
tion θ

(lj)
rt with x(lj)

rt and initialising the weight ω
(lj)
rt of x(lj)

rt as 1/M , samples
{x(lj)

rt , θ
(lj)
rt , ω

(lj)
rt }M

j=1 can be achieved.

For each weighted sample {x(lj)
rt , θ

(lj)
rt , ω

(lj)
rt } generated by nr, the weight ω

(lj)
rt

is updated by the deviation degrees between x(lj)
rt and the real position of nt

evaluated by other reference nodes of nt. The update principle is

ω
(lj)
rt = ω

(lj)
rt

∏

nr′ ∈Γr\nr

pv(r′t), (13)
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where Γr is the reference node set of nt; pv(r′t) is given by

pv(r′t) = pv(d′
r′t, d

′
r′t − d′′

r′t), (14)

where d′
r′t=||x(lj)

rt −xr′ || and d′′
r′t is a noisy measurement of the distance between

nt and reference node nr′ , and regarded as the real distance between them for
further evaluation. To evaluate the deviation degree between x(lj)

rt and the real
position xt of nt, firstly, x(lj)

rt is assumed as xt, then d′
r′t can be considered as a

distance measurement between nr′ and nt, thus d′
r′t−d′′

r′t is ranging error of d′
r′t

and pv(r′t) denotes the deviation degree between x(lj)
rt and xt evaluated by nr′ .

With all the samples received by nt, sample filtering process is conducted.
For the M samples generated by nr in this iteration, M/|Γr| samples with the
maximum weights are reserved, where |Γr| is the number of nodes in Γr. Through
recording the random directions of the reserved samples generated by nr in
this iteration, a direction range Sθ can be achieved, which will be the random
direction range for nr to generate samples of nt in the next iteration. For nt,
through normalizing the weights of the remaining samples {x(lk)

t , θ
(lk)
t , ω

(lk)
t }M

k=1,
the estimated position in this iteration is calculated with

x̂(l)
t =

∑M

k=1
ω
(lk)
t x(lk)

t . (15)

The iteration process terminates when convergence condition is met or max-
imum number L of the iterations is reached, and the convergence condition is

‖x̂(l)
t − ̂x(l−1)

t ‖ ≤ ε, (16)

where ε is a predefined threshold. In the iteration process of agent node nt, if the
convergence condition is met, which indicates that nt is well located and it will
become a reference node for other unlocated agent nodes. And the final estimated
position of nt is assigned as the estimation of current iteration. Otherwise, nt is
unlocated in the localization process of current time slot and the estimation of
the last iteration will be the final estimated position of nt. The detailed NBP-
based cooperative localization process is summarized in Algorithm 1.

4 Simulation Results

4.1 Simulation Setup

In the simulations, we consider a 100×100m2 area with 150 nodes, including 18
anchor nodes (i.e., 6 clusters are established). And we assume that the movement
of each node follows the Gaussian-Markov mobility model [10]. Table 1 lists the
key parameters used in the simulations.

Results of the simulations are obtained from the localization process of the
agent nodes in 500 continuous time slots.
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Table 1. The key parameters in simulations

Parameter Value

R: transmission radius 30 m

L: maximum number of iteration 10

ε: convergence threshold 0.1 m

Condition of anchor node re-selection 5 unlocated agent nodes

4.2 Performance Evaluation

Influence of Anchor Node Distribution. Three kinds of anchor node distri-
bution are considered. The uniform distribution means that we choose the nodes
that distributing in approximately uniform way in the network as anchor nodes,
and the random distribution denotes that anchor nodes are randomly selected.

The performance on the positioning error of all the agent nodes in the network
is valued by the root mean square error (RMSE)

RMSE =
√

1
Nt

∑
nt∈St

‖xt − x̂t‖2, (17)

where Nt is the number of agent nodes in the network; St represents the agent
node set; x̂t denotes the final estimated position of agent node nt. Figure 1
shows the cumulative distribution functions (CDFs) of the RMSE performance
of NBP with 200 samples based on the three kinds of anchor node distribution,
we can see that compared with the random distribution case, the performance of
NBP based on the proposed distribution is very close to the performance of the
uniform distribution case, which can be regarded as the optimal distribution. The
result indicates that the proposed anchor node selection algorithm can achieve a
reasonable distribution of anchor nodes for the NBP-based localization schemes.

1.5 2 2.5 3 3.5 4 4.5 5
Positioning error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Random distribution
Uniform distribution
Proposed distribution

Fig. 1. Performance comparison on positioning error (RMSE) of NBP with different
kinds of anchor node distribution.
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Positioning Performance. Figure 2 shows the CDFs of the positioning error
in the proposed scheme and NBP with different numbers of samples. The result
reveals that more samples can improve the RMSE performance of both the pro-
posed scheme and NBP. With same number of samples, the performance on posi-
tioning accuracy of the proposed scheme outperforms that of NBP. Compared
with NBP, the change of sample number has less impact on the performance on
positioning accuracy of the proposed scheme, and the proposed scheme with less
samples can achieve a better performance on positioning accuracy.

Complexity Comparison. The performance on time complexity of the pro-
posed scheme and NBP is evaluated by the normalized CPU running time.
Figure 3 shows the comparison of the computational cost of the proposed scheme
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NBP (500 samples)
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Proposed (200 samples)
Proposed (500 samples)

Fig. 2. Performance comparison on positioning error (RMSE) of the proposed scheme
and NBP with different numbers of samples.
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Fig. 3. Performance comparison on computational cost of the proposed scheme and
NBP with different numbers of samples.
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and NBP with different numbers of samples. Compared with NBP, improved
performance on the computational cost of the proposed scheme can be clearly
observed, which demonstrates the low computational cost of the proposed
scheme.

5 Conclusions

This paper focuses on solving the problems of applying NBP in MANETs, where
nodes are randomly deployed and keep moving, and proposes an efficient and
practical NBP-based scheme. The proposed scheme considers the issues of anchor
node selection, node mobility and non-Gaussian uncertainty to obtain a bet-
ter performance of the localization process. Specially, anchor nodes are firstly
selected based on the clustered network, which is established in a distributed way,
then the cooperative localization process is conducted. And a practical ranging
error model is adopted in the scheme. Furthermore, to tackle the issue of node
mobility, a re-selection process of anchor nodes is conducted when necessary.
The simulation results reveal that the proposed scheme has a significant effect
on improving the positioning accuracy and reducing the computational cost of
localization process compared with the traditional NBP algorithm.
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