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Abstract. Space Information Flow (SIF), also known as Space Net-
work Coding, is a new research paradigm which studies network coding
in Euclidean space, and it is different with Network Information Flow
proposed by Ahlswede et al. This paper focuses on the problem of Con-
strained Space Information Flow (CSIF), which aims to find a min-cost
multicast network in 2-D Euclidean space under the constraint on the
number of relay nodes to be used. We propose a new polynomial-time
heuristic algorithm that combines Delaunay triangulation and linear pro-
gramming techniques to solve the problem. Delaunay triangulation is
used to generate several candidate relay nodes, after which linear pro-
gramming is applied to choose the optimal relay nodes and to compute
their connection links with the terminal nodes. The simulation results
shows the effectiveness of the proposed algorithm.

Keywords: Network Information Flow · Delaunay triangulation ·
Network coding in space · Space Information Flow

1 Introduction

Departing from Network Information Flow (NIF) proposed by Ahlswede et al.
[1] in 2000, Space Information Flow (SIF) [2,3] is a new concept proposed by
Li and Wu in 2011 and it studies network coding in Euclidean space. SIF is
also different with both Euclidean Steiner Minimal Tree (ESMT) [4] and Min-
imum Spanning Tree (MST) [5]. ESMT is the optimal routing in space. MST
connects together all the terminals of a given set with a shortest network, with-
out any additional relay node, while additional relay nodes are required in SIF
[2,3]. The pentagram [6] example illustrated in Fig. 1 demonstrates that SIF can
strictly outperforms ESMT, with the cost advantage [7] being strictly bigger
than 1. The cost advantage is defined as the ratio of the minimum network cost
without network coding over that with network coding. Consider six multicast
terminal nodes in a 2-D Euclidean space depicted in Fig. 1(a). Among the six
multicast terminals, five (T1 to T5) are equally placed on a circle and form a
regular pentagon whose center is node O. The circumscribed circle of the pen-
tagon has a radius of 1. Node O is selected as the multicast source, while the
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remaining five nodes (T1 to T5) are the receivers. With ESMT, an optimal solu-
tion can be computed [8] and the cost is 4.6400/bit (Fig. 1(b)). Three Steiner
nodes (S1 to S3) are introduced for connecting the terminal nodes, each adjacent
to three links which form three angles of 120◦. An optimal solution by SIF is
depicted in Fig. 1(c). The total distance is 9.1354, while every sink receives 2
bits. The normalized cost is 9.1354/2 = 4.5677/bit. Five relay nodes (R1 to R5)
are introduced for connecting the terminal nodes, each adjacent to three links
which form three angles of 120◦. The cost advantage of the pentagram example
is 4.6400/4.5677 ≈ 1.0158> 1. Despite its small value, we emphasize that the gap
between the two optimal costs reveals that multicast with SIF is fundamentally a
different problem from geometric ESMT, with a different problem structure, and
probably a different computational complexity. The placement of relay nodes in
wireless sensor networks is a potential application of SIF [9].

Fig. 1. Illustration example of pentagram. (a) Six terminal nodes in 2-D Euclidean
space; (b) Optimal solution with ESMT (cost = 4.6400/bit); (c) Optimal solution with
SIF (cost = 4.5677/bit).

For SIF, Li and Wu [3] studied the problem of multiple-unicast network
coding in space. Yin et al. [10] proved a number of properties of optimal multicast
network coding in 2-D Euclidean space. Xiahou et al. [11] applied SIF as a tool
to design a framework for analyzing the network coding conjecture. A heuristic
approach based on iterative method has been proposed by Hu et al. [12] to
address min-cost video multicast problem via Constrained SIF. A polynomial-
time heuristic algorithm for computing the optimal SIF solution in multicast
network has been proposed by Huang et al. [6]. In a subsequent study, Huang
and Li [9] presented a polynomial-time heuristic approach based on non-uniform
recursive space partitioning for computing SIF. In another subsequent work,
Uwitonze et al. [13] presented a polynomial-time heuristic approach based on
Delaunay triangulation that computes the SIF solutions in multicast networks.
In line with routing in space, Gilbert and Pollack [4] studied the properties of
optimal ESMT. As for MST, its complexity is polynomial [5].

The objective of SIF is to minimize the cost of constructing a network, allow-
ing network coding to be used and additional relay nodes to be inserted for con-
necting a given set of terminals in geometric space, while satisfying end-to-end
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throughput demands among terminals [2]. However, adding more relay nodes
may clearly lead to a higher cost in practice, given that each extra relay node
may be associated with hardware and deployment cost. Therefore, it is neces-
sary to consider such cost by minimizing the number of additional relay nodes.
In this paper, we propose the Constrained SIF (CSIF) problem, which is a new
version of SIF that considers the transmission of information flows in a geometric
space under the constraint (restriction) on the number of additional relay nodes
that can be introduced to connect a set of given terminal nodes. The space we
consider in this work is a 2-D Euclidean space. To the best of our knowledge,
this is the first work to explore the problem of Constrained SIF (CSIF) and to
use Delaunay Triangulation (DT) [14] in CSIF. DT has two properties that are
useful to reduce the overall length of the tree, as denoted by Smith et al. [14].
Firstly, since MST of N is contained in the DT (N), a number of edges in ESMT
is the same as edges in MST. Secondly, since each Delaunay triangle tends to be
equilateral, we achieve the maximum possible reduction in using the ESMT, as
compared with using the MST.

The main contribution of our paper can be summarized as follows:
We propose the first heuristic algorithm based on Delaunay Triangulation (DT)
and Linear Programming (LP) techniques, with a polynomial -time complexity
that computes the min-cost in multicast networks and the corresponding network
topology (including the way relay nodes are connected with the terminal nodes,
as well as the flow rate on the connection links), under the constraint on the
number of additional relay nodes to be introduced.

The rest of this paper is organized as follows: Sect. 2 discusses the problem
formulation. Section 3 describes the detailed steps of the new heuristic algorithm
for CSIF. Section 4 presents the simulation results, while Sect. 5 concludes the
paper.

2 Problem Formulation

This work focuses on the problem of min-cost multicast network coding in 2-D
Euclidean space. For N ≥ 3 given terminal nodes T1, T2,. . . ,TN in the Euclidean
space and a multicast session from one source to a number of sinks, the objective
is to compute a min-cost multicast transmission scheme using SIF, that permits
to insert at most M extra relay nodes. The total network cost is defined as∑

uv w(uv)f(uv), where f(uv) denotes the information flow rate on a link uv
in space, while w(uv) denotes the weight of the link uv, and it is equal to the
Euclidean distance ||uv|| of uv [2,3]. These two variables are called positions and
flow assignments. The connection topology of all nodes will be determined by
flow assignments, because a link with a zero rate shows that the link does not
exist. Our goal is to achieve the min-cost by tuning these two sets of variables
with no more than M relay nodes.
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3 The Proposed Heuristic Algorithm for CSIF

3.1 The Main Idea of Heuristic Algorithm

The main idea of our algorithm is to use at most M relay nodes to establish
a min-cost multicast network connection from N ≥ 3 given terminal nodes in
space. Before introducing the constraint number of relay nodes M , the algorithm
uses two alternative strategies to retain the relay nodes from LP computation:
1DT-2DT strategy and 2DT-1DT strategy. With 1DT-2DT strategy, the algo-
rithm retains the less possible candidate relay nodes first, followed by retaining
the most possible candidate relay nodes. With 2DT-1DT strategy, the algorithm
retains the most possible candidate relay nodes first, followed by retaining the
less possible candidate relay nodes. The less possible candidate relay nodes here
refer to the candidate relay nodes generated in triangles, while the most possible
candidate relay nodes refer to the candidate relay nodes generated in quadri-
laterals. Quadrilaterals are obtained by concatenating two adjacent Delaunay
triangles.

3.2 Detailed Description of Heuristic Algorithm

The proposed algorithm is based on DT and LP techniques. DT is used for
generating at most (2N−5) Delaunay triangles from N ≥ 3 given terminal nodes
[14]. Subsequently, it helps to compute a number of candidate relay nodes from all
Delaunay triangles and quadrilaterals. LP is applied to choose the optimal relay
nodes and to compute their connection links with the terminals. The proposed
algorithm adopts the following LP model:

Minimize cost =
∑

−→uv∈A w(−→uv)f(−→uv)
Subject to :

⎧
⎪⎪⎨

⎪⎪⎩

∑
v∈V↑(u) fi(

−→vu) =
∑

v∈V↓(u) fi(
−→uv) ∀i,∀u

fi(
−−→
TiS) = r ∀i

fi(−→uv) ≤ f(−→uv) ∀i,∀−→uv
f(−→uv) ≥ 0, fi(−→uv) ≥ 0 ∀i,∀−→uv

(1)

The LP model (Eq. (1)) is based on undirected network G = (V,E), where
V = N ∪ R, N denotes the set of terminal nodes and R is the set of extra
relay nodes, while E denotes the set of undirected links. There are bi-directed
possibilities of transmission in space. Therefore, we make links bi-directed and
denote a set of directed links as A = {uv , vu |uv ∈ E}. In the objective function,
the decision variable f(−→uv) is regarded as the combined effective flow rate on a
link −→uv. The coefficient w(−→uv) equals to the Euclidean distance |−→uv|(=|−→vu|=|uv|).
In the LP constraints, fi(uv) is regarded as the rate of information flow from the
source S to sink Ti on a link −→uv. Such kinds of information flow are conceptual
because they share instead of competing for available bandwidth on the same
link. f(−→uv) of a link uv equals to the maximum among all fi(−→uv). The constraint∑

v∈V↑(u) fi(
−→vu) =

∑
v∈V↓(u) fi(

−→uv) guarantees the conceptional flow equilibrium
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property for every node and every conceptual flow i. We have both fi(−→uv) and
fi(−→vu) to indicate the flows in two directions. V↑(u) and V↓(u) respectively denote
upstream and downstream adjacent set of u in V . The constraint fi(

−−→
TiS) = r

characterizes the desired receiving rate at each terminal. The constraints f(−→uv) ≥
0 and fi(−→uv) ≥ 0 give the trivial bound. The detailed steps of the algorithm are
shown in Algorithm1.

Algorithm 1. A Heuristic Algorithm for CSIF
Require: Input: N (N ≥ 3) terminal nodes, a multicast session
Ensure: Output: a CSIF solution
1: Initialize the total set of candidate relay nodes Rtotal = ∅;
2: Construct all the DT-triangles by Delaunay triangulation;
3: Initialize the subset of candidate relay nodes R(x) = ∅, R′(x) = ∅,

MINCOST=+∞;
4: for x = 1 to 2, do
5: Construct polygons Pi of 3 and 4 edges by concatenating x adjacent DT-triangles;
6: Construct the MST of each polygon Pi;
7: Obtain the candidate relay nodes R(x);
8: Construct a complete graph with (N +

∑x
x=1 |R(x)|) nodes;

9: Solve the LP model based on the complete graph and output MINCOST and
the corresponding resulting relay nodes R′(x);

10: if There are k (k ≥ 2) adjacent relay nodes only then
11: Use 2DT-1DT strategy to retain R′(x) from polygon Pi of 4 edges only
12: else
13: Use 1DT-2DT strategy to retain R′(x) from polygon Pi of 3 edges only
14: end if
15: end for

16: Calculate Rtotal =
2∪

x=1
R′(x);

17: for Rtotal = 1 to M , do
18: Construct a complete graph with (N + M) nodes;
19: Solve the LP model based on the complete graph and output the CSIF cost;
20: if cost < MINCOST then
21: MINCOST=cost
22: end if
23: Compute the ESMTs of each polygon Pi;
24: Place all ESMTs on a hierarchical priority queue Q based on the value of Δ =

MST (Pi)−ESMT (Pi)
ESMT (Pi)

;
25: Construct the network topology by picking ESMTs from Q in the same way as

the Kruskal’s algorithm;
26: end for
27: if The flow rates of all constrained relay nodes == 0 then
28: Output MINCOST and stop.
29: end if
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3.3 Complexity Analysis of Our Algorithm

Our heuristic algorithm considers all the possible candidate Steiner nodes gen-
erated from all Delaunay triangles concatenations as possible candidate relay
nodes. According to [15], the method to obtain the Steiner nodes in a triangle
and a quadrilateral is shown in Figs. 2 and 3, respectively.

Triangle: As depicted by Fig. 2, assume ∠V UW is the biggest angle in 	UVW .
If ∠V UW ≥ 120◦, then the Steiner node S is the vertex U . If ∠V UW < 120◦,
draw two equilateral triangles on any of the two edges of 	UVW , e.g., 	UV X
and 	UWY , then the Steiner node S is the intersection of the lines V Y and
WX. Thus, the time complexity is polynomial.

Quadrilateral: As stated by [15], the process to obtain the Steiner nodes in a
convex quadrilateral UVWX consists of three steps, as illustrated in Fig. 3. First,
draw two equilateral triangles 	UV Y and 	WXZ. Next, draw two circles which
pass at the vertices of the two equilateral triangles 	UV Y and 	WXZ. Last,
draw the line Y Z and the two steiner nodes S1 and S2 are the intersection of the
line Y Z with the two circles, as depicted in Fig. 3. Hence, the time complexity
is also polynomial.

S

V W

U
Y

X

Fig. 2. Computing the candidate
Steiner node in a triangle.

S2S1

U X

V W

Y Z

Fig. 3. Computing the candidate
Steiner nodes in a quadrilateral.

The time complexity of DT is O(N logN) [16]. The time complexity of com-
puting the candidate Steiner nodes for every Delaunay triangle and quadrilat-
eral formed by concatenating two neighboring Delaunay triangles is polynomial.
Given N ≥ 3 terminal nodes, we can get at most (2N−5) Delaunay triangles and
(3N −6) edges by DT. It is possible to concatenate at most (N −2) neighboring
triangles and 2N − 5 quadrilaterals, respectively. Hence, |Rtotal| ≤ 6N − 16, and
the time complexity of LP is O((N+|Rtotal|)2) = O((7N−16)2) = O(N2). Thus,
the time complexity of our algorithm is O(N3 logN), which is polynomial.

4 Simulation Results

We have simulated our heuristic algorithm in 2-D Euclidean space. Our simula-
tions used MATLAB to solve LPs. In multicast networks, the number of relay
nodes required for an optimal solution is upper-bounded by (N − 2) for h = 1
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and (2N − 3)(2N − 2) for h = 2 [10], where N is the number of the terminals
and h is the multicast throughput. Thus, we set M<(N − 2) for h = 1 and
M<(2N − 3)(2N − 2) for h = 2, where M is the constraint on the number of
relay nodes. All the tested cases correspond to h = 1, except the pentagram
network, which corresponds to h = 2 [6]. The optimal ESMT is computed by
GeoSteiner 3.1 that implements an exact ESMT algorithm [8]. The MST is com-
puted by implementing Prim’s algorithm [5] in MATLAB. For each tested case,
one node is set as the source, while the remaining nodes are set as the terminals.

4.1 Cases of 10 Nodes Data Sets from OR-Library

We applied our algorithm to 10-points (N = 10) data sets from OR-Library
[17], which contained 15 cases with different positions. We set M < 8 and we
evaluated the performance of our algorithm by comparing the results of CSIF
with SIF, optimal ESMT and MST. We define the gap between SIF and CSIF
as gap = SIF

CSIF . Figure 4 shows the MST cost, min-cost for CSIF, SIF cost and
optimal ESMT cost for all the 15 cases. Both SIF and optimal ESMT achieve
the same results, since SIF degrades into optimal ESMT when h = 1 [10]. CSIF
outperforms MST for all the cases. Moreover, CSIF cost is very close to both
SIF and ESMT costs for all the 15 cases (See Fig. 4). Table 1 shows the gap for
all the 15 cases. The gap ≈1 for almost all the cases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

15 Cases from OR−Library

M
in

im
um

 C
os

t

MST cost
CSIF cost
SIF cost
ESMT cost

Fig. 4. MST cost, min-cost for CSIF when M < 8, SIF cost and ESMT cost.

4.2 The Pentagram Network

We applied our algorithm to the pentagram network, where N = 6. We set
M = 5 and the obtained CSIF topology is shown in Fig. 5. Figure 6 shows
the optimal topology with SIF. Both SIF and CSIF achieve the same results
(cost = 4.5677/bit), bacause they both use the same number of relay nodes, as
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Table 1. Gap = SIF
CSIF

Case Gap Case Gap Case Gap

1 0.9910367784 6 0.9897108913 11 0.9957873959

2 0.9997107509 7 0.9909349461 12 0.9979368571

3 0.9876711421 8 0.9964208849 13 0.9999795101

4 0.9949909489 9 0.9949003406 14 0.9993935543

5 0.9928556449 10 0.9982077096 15 0.9970678120

it can be seen in Figs. 5 and 6 and the gap = 1. Hence, the algorithm achieves
the optimal solutions for the pentagram network. Figures 7 and 8 show the MST
(cost = 5.0000/bit) and ESMT (cost = 4.6421/bit) topologies, respectively. CSIF
outperforms both MST and ESMT in terms of min-cost.

1 1.5 2 2.5 3
1

1.5

2

2.5

3

x

y

Source node
Terminal nodes
Relay nodes

Fig. 5. CSIF result for Pentagram
network.
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Source node
Terminal nodes
Relay nodes

Fig. 6. SIF result for Pentagram
network.

4.3 Random Networks

We tested the algorithm in random networks, which are generated by the
Waxman model [18]. Throughout our simulations, we observed that in most
of the cases for such random networks, gap ≈1 when M < (N − 2). Fur-
thermore, CSIF outperforms MST for all tested cases. Figure 9 illustrates the
CSIF result (cost = 1.5776/bit) for one example of such cases when N = 8 and
M = 2. Figure 10 shows the SIF result (cost = 1.5771/bit), Fig. 11 shows the
MST result (cost = 1.6053/bit), while Fig. 12 shows the optimal ESMT result
(cost = 1.5771/bit). Both SIF and optimal ESMT achieve the same results, since
SIF degrades into optimal ESMT when h = 1 [10]. The gap = 0.9996.
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Fig. 7. The MST result for penta-
gram network.

Fig. 8. ESMT by GeoSteiner for
pentagram network.
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Fig. 9. CSIF result for random net-
work when N = 8 and M = 2.
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Fig. 10. SIF result for random net-
work when N = 8.
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Fig. 11. MST result for random
network when N = 8.

Fig. 12. The optimal ESMT by
GeoSteiner for random network.
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5 Conclusion

This work proposes a solution to the problem of Constrained Space Information
Flow in multicast networks using a new O(N3 logN) algorithm which takes into
consideration a constraint on the number of relay nodes while computing the
min-cost and the topology of the network for N ≥ 3 terminal nodes in 2-D
Euclidean space. The algorithm design is based on DT and LP techniques. The
output of the algorithm is a min-cost multicast topology that consists of terminal
(original) nodes and relay (additional) nodes. Our future work includes to apply
Constrained Space Information Flow to wireless sensor networks.
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