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Abstract. Cloud computing technology achieves enormous scale by
routing service requests from users to geographically distributed servers,
typically located at different data centers. On one hand, energy con-
sumption of data centers and networks has been receiving increasing
attention in recent years. On the other hand, users require low latency
during data access from data centers. In this paper, we tackle the problem
of energy-efficient data placement in data centers, taking into account
access latency, energy consumption of data centers and network trans-
port. We propose two request-routing algorithms to determine the num-
ber of copies for each data chunk and the data centers accommodating
the data chunk. Our simulation results have shown that the proposed
algorithms are effective in terms of the tradeoff among the data access
latency, the energy consumed by network transport and data centers.
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1 Introduction

Cloud computing technology achieves enormous scale by routing service requests
from end users to a set of geographically distributed servers, typically located
at different data centers. In order to reduce data access latency experienced by
users, it is quite often to place the data in multiple data centers so that the users
can access the data from nearby data centers. However, the data centers are large
consumers of electricity, consuming about 1.3% of the worldwide electricity sup-
ply [1]. At the same time, a lot of energy needs to power the network equipments,
which consume approximately 14.8% of the total ICT energy consumption [2].

There has been some work on reducing the delay, the electricity cost and con-
sumption of the data centers and the networks in recent years. A request-routing
scheme to minimize the electricity bill of multi-datacenter systems is proposed
in [3]. [4] improves the algorithms in [3] on multi-region electricity markets to
better capture the present electricity price situation. [5] proposes an adaptive
operational cost optimization framework incorporating time-varying electricity
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prices and dynamic user request rates. [6] considers the joint optimization prob-
lem of minimizing carbon emission and electricity cost. [7] adjusts the number of
servers running in data centers for a tradeoff between latency and carbon emis-
sions. [8] provides a method to calculate the energy consumption of the network,
which can estimate the energy consumption required to transport one bit from
a data center to a user through the Internet. [9] jointly considers the electricity
cost, service level agreement (SLA) requirement, and emission reduction bud-
get by exploiting the spatial and temporal variabilities of the electricity carbon
footprint. [10] proposes a request-routing scheme, FORTE, allowing operators
to strive the tradeoff among electricity costs, access latency, and carbon emis-
sions. Assuming each data chunk, i.e. each piece of data, is placed in only one
data center, [11] proposes a request-routing scheme to strike the tradeoff among
access latency, energy consumption of the data centers and the network transport
during data placement.

In this paper, we tackle the data placement problem in geo-distributed cloud
data centers, taking into account the access latency, the energy consumption of
the servers in the data centers, and the energy consumed by network transport,
assuming each data chunk can be placed in more than one data center. The main
contribution of this work is two-fold: First, we investigate the data placement
problem with the objective to strike the tradeoff among the three factors above.
Second, we propose two efficient algorithms to determine the proper number of
copies for each data chunk and the data centers accommodating the data chunk.

The rest of the paper is organized as follows. The problem under study is
formally defined in Sect. 2. The proposed algorithms are presented in Sect. 3.
Section 4 reports the performance evaluation. The paper concludes in Sect. 5.

2 Problem Formulation

The network model that the data centers provide data services to the end users
is similar to the one in [8,11], and the energy eI(ui, dcj) required to transport
one bit from a data center to a user through the Internet is estimated via Eq. (1).

eI(ui, dcj) = 6(3 Pes

Ces
+ Pbg

Cbg
+ Pg

Cg
+ 2 Ppe

Cpe
)

+2 Pc

Cc
hc(ui, dcj) + Pw

2Cw
hc(ui, dcj)

(1)

where Pes, Pbg, Pg, Ppe, Pc and Pw are the power consumed by the Ethernet
switches, broadband gateway routers, data center gateway routers, provider edge
routers, core routers, and WDM transport equipment, respectively. Ces, Cbg, Cg,
Cpe, Cc and Cw are the capacities of the corresponding equipment in bits per
second. hc(ui, dcj) is the number of hops during the data transmission in the core
network. We assume a server consumes the full-system power when the server
is on, because (1) it is an estimator accurate enough to determine the relative
rank in energy consumption; (2) no general analytical model of server energy
consumption for various kind of servers at different loads is available [12]. The
problem is formulated as follows.
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Minimize:

λ1

∑

ui,dcj ,sm,dk
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Subject to:

rep(dcj , sm) = min(
∑

dk

rep(dcj , sm, dk), 1),∀dcj , sm (3)

∑

dcj ,sm

rep(dcj , sm, dk) ≥ 1,∀dk (4)

∑
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p(ui | dk) = 1,∀dk (5)

eS(dcj , sm) = P dcj
sm

∗ PUE(dcj) (6)
∑

dk

rep(dcj , sm, dk)s(dk) ≤ C(sm, dcj),∀dcj , sm (7)

where p(ui | dk) is the probability that a given request coming from user ui

is asking for data dk, s(dk) is the size of data dk, l(ui, dcj , dk) is the average
latency between user ui and data center dcj for data dk, rep(dcj , sm, dk) indicates
whether data dk is placed in server sm in data center dcj , rep(dcj , sm) indicates
whether server sm in data center dcj has accommodated some data, eS(sm, dcj)
is the average energy consumption of server sm in data center dcj , PUE(dcj) is
the PUE of data center dcj , P

dcj
sm is the average processing power of sever sm in

data center dcj , and C(sm, dcj) is the capacity of server sm in data center dcj .
λ1, λ2, and λ3 in Eq. (2) are the constant normalized weights of the sub-

objectives of the latency, the energy consumption of the servers in the data
centers and the energy consumed by the network transport, respectively. Equa-
tion (3) mandates the data placement incurs access delay and energy consump-
tion. Equation (4) requires each data chunk to be placed in some data center(s).
Equation (5) determines the request for a data chunk comes from one of the
users. Equation (6) defines that the energy consumption of the servers should
take into account the PUE of the data center. Equation (7) dictates the size of
the data stored in a server cannot exceed the capacity of the server.

3 Energy-Efficient Latency-Aware Data Deployment
Algorithms

We propose an Energy-efficient Latency-aware Data Deployment algorithm
(ELDD) for the problem. The algorithm shown in Algorithm1 consists of two
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Algorithm 1. Algorithm ELDD
Input: The large data segment set Dl

k′
Output: The set of working servers
1: for all dlk′ do
2: Merge.
3: Sort the data centers.
4: Assume all the data centers have accommodated large data segment dlk′ .
5: Assign each user to the data center with the least cost that holds dlk′ .
6: for all dcj do
7: Evaluate the cost of turning off the server accommodating dlk′ in dcj .
8: Turn off the server if shutting down the server will lead to cost saving.
9: end for

10: end for

stages: (1) The data chunks are merged into large data segments so that each
data segment consumes nearly the full capacity of a server. (2) The proper servers
are found to accommodate each large data segment dl

k′ .
A data chunk with high access probability is more likely to be placed in more

than one data center to reduce the energy consumption of network transport and
the access delay. The data chunks are sorted by the non-ascending order of the
total access probability from all the users in algorithm ELDD. The algorithm
proceeds iteratively using greedy strategy. Within each iteration, the algorithm
performs procedure Merge to put multiple data chunks into a large data segment,
under the constraint that the large data segment does not exceed the storage
size of server. The large data segments are formed one by one. This procedure
continues until all data chunks are put merged.

After obtaining the large data segment set with procedure Merge, algorithm
ELDD searches for the proper servers to accommodate each large data segment
dl

k′ . The basic rationale of algorithm ELDD is to iteratively turning off the
servers. Initially, algorithm ELDD places each large data segment dl

k′ in all the
data centers. Therefore, all the users can access the required data from the
closest data center to reduce the energy consumption of network transport and
the access delay. The effect of turning off the server accommodating large data
segment dl

k′ in each data center is evaluated. The cost of placing data chunk dk

on server sm in data center dcj is calculated via Eq. (8). If a server possessing dl
k′

is turned off, the users accessing dl
k′ from the server have to acquire dl

k′ from the
next closest data center. The server will be shut down if the inactive server can
reduce the placement cost. The procedure repeats for each large data segment
set, until all the large data segments are placed into some server(s).

cost(dk, dcj , sm) = λ1

∑

ui

l(ui, dcj)p(ui | dk)

+λ2eS(dcj , sm) + λ3

∑

ui

s(dk)eI(ui, dcj)p(ui | dk) (8)

Theorem 1. Assume the number of data centers and users are D and U , respec-
tively. The time complexity of algorithm ELDD is O(DU + D log D).
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Proof: The time complexity of sorting the data centers is O(D log D).
Assume two arrays Leastcost and NextLeastcost, each with the length of U .
Leastcost[ν] = ω denotes that the working data center with the least cost to
accommodate the data required by user uν is the data center with the ω-th least
cost for user uν . NextLeastcost is similar to Leastcost, which is to store the level
of the working data center with the next to the least placement cost to accommo-
date the data required by user uν . Initially, each user can access the data from the
data center with the least cost, since each data chunk has a copy in all the data
centers. Therefore, Leastcost[ν] = 1 and NextLeastcost[ν] = 2 for each ν. For
each Leastcost[ν] = ω, we evaluate the cost of turning off server in the data cen-
ter and assigning user uν to the data center with the next to the least placement
cost, if possible. If it leads to cost saving by turning off the server in the data
center, Leastcost and NextLeastcost will be updated. ν increases from 1 in the
range of [1,D], and the traverse of Leastcost and NextLeastcost runs in O(DU)
time. Therefore, the time complexity of algorithm ELDD is O(DU +D log D). �

Note that we can deal with the data centers in different orders while placing
a data chunk in the data centers. We propose ordering method ELDD-Standard
which sorts the servers in the data centers in a non-descending order of the
average processing power of the servers. Another ordering criteria is defined via
Eq. (9).

Sj = fj −
∑

i

max{0, vi − ci,j} (9)

where fj denotes the server energy consumption of data center dcj , vi is the
integrated cost of the data access latency, energy consumption of the network
transport and the data centers while placing the data in the closest working
data center, and ci,j indicates the cost of the data access latency an energy
consumption of network transport by assigning user ui to data center dcj . We
propose sorting method ELDD-Fast which sorts the data centers in the non-
descending order of Sj . For Simplicity, we call ELDD-Standard and ELDD-Fast
as Standard and Fast, respectively.

4 Simulation

We evaluate the performance of the proposed algorithms Standard and Fast by
comparing them with the algorithms FORTE [10] and GLDD [11]. The objective
of FORTE indicates that both the electricity costs and carbon emissions increase
with the number of the servers used in the data centers. With FORTE, a data
chunk may be placed in one or more data centers, while GLDD places each data
chunk in a data center. Similar to GLDD, Standard and Fast strike a tradeoff
among the factors considered in GLDD. However, a data chunk may be placed
in one or more data centers with Standard and Fast, which is similar to FORTE.

We use geographical distance as an approximation for latency similar to
[10,11]. The request for a data chunk from a user is random, and any request for
a data chunk comes from one of the users. Each data center hosts 200 servers,
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each with the capacity of 2TB and the power of 500 W. The equipments used
in the network are the same as [13]. The quantity of data chunks, the average
distance between the users and the data centers, the PUE of the data centers,
and the number of WDM and core routers are set as the same as [11].

4.1 Impact of Various Number of Data Chunks

In this subsection, we investigate the performance of Standard, Fast, GLDD
and FORTE with regard to the distance, the energy consumed by the network
transport and the servers in the data centers versus different number of data
chunks, assuming the number of users is 1000.

Figure 1 demonstrates that in general the distance increases with the increase
of the number of data chunks, which is also shown in Eqs. (2) and (8). FORTE
places each data chunk in one or more data centers and each user can access the
data from the data center located closest to the user. Each data chunk has only
one copy with GLDD, and each user may not be able to access the data from the
closest data center. Standard and Fast may place each data chunk in one or more
data centers. However, the number of data copies with Standard and Fast may
be potentially less than that with FORTE, since Standard and Fast also consider
the factors of energy consumed by the network transport and the data centers.
Therefore, FORTE leads to the least distance and GLDD results in the largest
distance. Standard only considers the energy consumption of the data centers
while evaluating the cost of turning off the servers. In contrast, Fast takes into
account the energy consumption of the network transport and the data access
latency, in addition to the energy consumption of the data centers. Therefore,
Fast potentially places more copies of the data than Standard, which leads to
less distance than Standard.

Figure 2 illustrates that the energy consumption of the servers in the data
centers increases with the increase of number of data chunks, because more
servers are needed to accommodate the data. FORTE consumes the most energy,
since FORTE places more copies of the data. Each data chunk is placed in only
one data center with GLDD, and hence GLDD requires the least energy. Fast
potentially places more copies of the data than Standard, which makes Fast
consume more energy than Standard.

Figure 3 shows that the energy consumed by network transport increases
with the increasing number of data chunks, since more data transfer incurs more
energy consumption in the network. FORTE results in the least energy consumed
by the network transport. With FORTE, the data go through shorter distances
between the data centers and the users than with GLDD, Standard and Fast,
which potentially reduces the number of network devices needed for the data
transfer as shown in Eq. (1). With GLDD, each data chunk is placed only in
one data center. The data access has to experience largest distance, and hence
requires the most number of network devices, which makes GLDD consume
the most network transport energy consumption. Fast potentially leads to less
distance and less network devices than Standard, and hence Standard results in
more energy consumed by the networks.
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Fig. 1. Distance with the algorithms of
Standard, Fast, GLDD and FORTE as
the increasing number of data chunks.
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Fig. 2. Energy consumption of
servers with the algorithms of Stan-
dard, Fast, GLDD and FORTE
as the increasing number of data
chunks.
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Fig. 3. Energy consumed by transport
with the algorithms of Standard, Fast,
GLDD and FORTE as the increasing
number of data chunks.
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Fig. 4. Integrated cost with the
algorithms of Standard, Fast,
GLDD and FORTE as the increas-
ing number of data chunks.

The performance in terms of the integrated cost of the distance, the energy
consumed by the servers in the data centers and the network transport is depicted
in Fig. 4. λ1, λ2 and λ3 are all set as 1, so that all the three factors will have equal
impact on the data placement decision. Standard, Fast and GLDD consider all
the three factors of the data access latency, and the energy consumption incurred
by the network transport and the data centers, while FORTE does not consider
the energy consumption of the network transport. Therefore, Standard, Fast and
GLDD achieve better results than FORTE.

4.2 Impact of Various Number of Users

In this subsection, we compare Standard and Fast, with GLDD and FORTE
versus different number of users, assuming the number of data chunks is 5000.
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Fig. 5. Latency with the algorithms of
Standard, Fast, GLDD and FORTE as
the increasing number of users.
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Fig. 6. Energy consumption of
servers with the algorithms of Stan-
dard, Fast, GLDD and FORTE as
the increasing number of users.

The simulation results in Fig. 5 show that in general the distance keeps sta-
ble with various number of users. When the number of data chunks is fixed,
the increase of the number of users decreases the probability that each data
chunk is accessed by each user. FORTE leads to the least distance and GLDD
results in the largest distance. The number of copies with Standard and Fast
may be potentially less than the number of copies with FORTE, and GLDD
places each data chunk in only one data center. Standard only considers the
energy consumption of the data centers while evaluating the cost of turning off
the servers. In contrast, Fast takes into account the energy consumption of the
network transport and the data access latency, in addition to the energy con-
sumption of the data centers. Therefore, Fast potentially places more copies of
the data than Standard, and results in less distance than Standard.

Figure 6 illustrates the energy consumption of the servers keeps steady
because of the fixed number of data. FORTE consumes the most energy, since
FORTE potentially creates the most number of data copies. GLDD places each
data chunk in only one data center, and hence requires the least number of
servers, which leads to the least server energy consumption. Standard achieves
better performance than Fast, since Fast places the data in more data centers
and thus requires more servers.

Figure 7 shows the energy consumed by the network transport increases with
the growth of the number of users, since more users access the data through
the network. FORTE achieves the best performance, because users can access
the data from the closest data centers. GLDD consumes the most energy, as
each data chunk is placed in only one data center so that the users go through
largest distance to access the data. Fast outperforms Standard, since the users
can access the data from the closer data centers with Fast than Standard.

The performance in terms of the integrated cost of the distance, the energy
consumed by the servers in the data centers and the network transport is given
in Fig. 8. By considering the three factors of the latency, the energy consumption
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Fig. 7. Energy consumed by transport
with the algorithms of Standard, Fast,
GLDD and FORTE as the increasing
number of users.
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of data centers and network transport, Standard and Fast outperforms FORTE
and GLDD without the limitation of the number of data copies. Fast performs
better than Standard because Fast potentially places the data in more data
centers, and the decreased cost of network transport energy consumption can
compensate the increased energy consumed by the data centers.

5 Conclusions

Cloud computing technology enables large-scale Internet applications to provide
service to end users by routing service requests to geographically distributed
data centers. Currently, the data centers and the network transport that power
the applications consume significant electricity. At the same time, latency is also
an important concern for the end users. In this paper, we tackled the problem
of energy-efficient and latency-aware data placement in data centers. The objec-
tive was to reduce the energy consumed by network transport and data center
servers, while reducing access latency. We proposed two efficient algorithms to
determine the proper number of copies for each data chunk and the data cen-
ters accommodating the data chunk. Our simulation results have shown that the
proposed algorithms are effective in terms of the tradeoff among the data access
latency, the energy consumed by network transport and data centers.
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