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Abstract. The past decade has witnessed the rapid development of
cloud computing. Virtualization, which is the fundamental technique
in providing Infrastructure as a Service (IaaS), has led to an explo-
sive growth of the cloud computing industry. Fault-tolerance is a sig-
nificant requirement of cloud computing due to the Service Level Agree-
ments (SLA). In order to achieve high reliability and resilience of real-
time systems in virtualized clouds, a Virtualization-based Fault-Tolerant
Scheduling (VFTS) algorithm is proposed. In this paper, fault tolerance
is implemented by using primary-backup approach. VFTS is designed
for periodic and preemptive tasks in homogeneous environment. Simu-
lation results demonstrate an impressing saving of processing resources
compared with those needed by the dual-system hot backup approach,
which proves the feasibility and effectiveness of the proposed VFTS algo-
rithm.

Keywords: Fault tolerance · Real-time system · Scheduling · Virtual-
ized cloud

1 Introduction

Cloud computing is a new paradigm for providing computing resources to users
on-demand dynamically [1]. The feature of quick deployment relies on virtual-
ization to a large extent. Virtualization is a technology that divides hardware
resources to multiple logical computing units using software method [2]. With
virtualization, dynamic resource allocation, flexible scheduling and cross-regional
sharing can be realized. Virtualization makes it possible to elastically share cloud
resources to multi-users at the same time.

A real-time system is described as one that processes data and returns result
both correctly and timely [3]. In other words, correctness and timeliness are
the main principles of real-time systems. Fault-tolerance plays a significant role
in ensuring the functioning of cloud systems, especially for those with safety-
critical property (e.g. nuclear power system, electronic cruise control system and
medical electronics system). Fault-tolerant scheduling is a superior method which
can combine fault-tolerant technique with many different scheduling methods.
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Among all the fault-tolerant schemes, primary-backup (PB) approach is the most
commonly used one. In the PB approach, each task is represented by two copies,
i.e., the primary copy and the backup copy. The primary copy executes when
the system functions normally, and the backup copy executes depending on its
type. If the backup copy is an active one, it always runs just like primary copy.
Passive copy executes only in case of system failure.

In this paper, a novel fault-tolerant scheduling algorithm VFTS that com-
bines both virtualization and PB approach is proposed. VFTS assigns tasks to
virtual machines (VMs) instead of to hosts directly like [4]. Meanwhile, VFTS
provides fault-tolerance for cloud system by scheduling tasks among different
VMs. Schedulability and effectiveness are verified by theorems and experiments.
It is shown that VFTS can accomplish the purpose of fault-tolerance and saving
more precise computing resources.

The remaining part of the paper is organized as follows. Related work in
this area is reviewed in Sect. 2. Section 3 gives the notations, assumptions, and
detailed descriptions of the scheduling model. Section 4 deals with the schedul-
ing criteria and constrains. Based on the analysis, scheduling algorithm VFTS is
then presented. In Sect. 5, simulation results evaluate the performance of VFTS
algorithm compared with the simple duplication approach. Finally, Sect. 6 sum-
marizes the major contribution of this paper and discusses future directions of
this work.

2 Related Work

Since assigning real-time periodic tasks to processors has been proved to be NP-
hard [5], several heuristic algorithms for allocating tasks have been researched.
Rate-Monotonic (RM) algorithm for preemptively scheduling periodic tasks on
a single processor was proposed by Liu and Layland [6]. In RM scheduling, tasks
with smaller periods have higher priorities, and tasks with low priority will be
preempted by tasks with high priority if their running time conflicts. Joseph
and Pandya [7] proposed the sufficient and necessary condition for testing the
schedulability of a bunch of priority driven tasks on a single processor, called
the Completion Time Test (CTT). Rate-Monotonic First-Fit (RMFF), which
extended RM to multiprocessor systems, was proposed by Dhall and Liu [8].

As for fault-tolerant scheduling algorithms, active duplication approach is
simple and commonly used. In order to reduce system overhead, backup over-
booking and deallocation were proposed in [9] to tolerate fault in multiprocessor
systems. But it is only for nonpreemptive and aperiodic tasks. Fault-Tolerant
Rate-Monotonic First-Fit (FTRMFF) was proposed in [4] by extending the
RMFF algorithm and combining backup overbooking and deallocation. Active
Resource Reclaiming (ARR) was proposed in [10] to extend FTRMFF with
the phasing delay technique [11], which reduces the overlapping between a pri-
mary and backup copy. Task Partition based Fault Tolerant Rate-Monotonic
(TPFTRM) introduces a new type of backup – the overlapping backup, and
abandons active backup to utilize the computing resources more efficiently.
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However, none of the fault-tolerant scheduling algorithms mentioned above
take virtualization, which is the key feature of cloud systems, into account. Wang
et al. proposed a fault-tolerant mechanism FESTAL, which extends the primary-
backup model to schedule real-time tasks in clouds [12]. Nonetheless, it is a
dynamic algorithm for heterogeneous systems.

In this paper, we investigate a novel static scheduling algorithm that assigns
tasks to multiple hosts, each of which contains several homogeneous virtual
machines. Three objectives are satisfied: (1) tasks are finished before their dead-
lines, (2) fault-tolerance is guaranteed, and (3) virtualization characteristics are
considered.

3 Scheduling Model

This section presents the characteristic descriptions and notations of the model.

3.1 Fault-Tolerance Model

For the fault-tolerance model, some assumptions are made for sake of conve-
nience:

1. Hosts fail in a fail-stop manner, which means a host either functions well or
breaks down.

2. Faults are independent. That is to say, a faulty host can not cause incorrect
behaviours in a non-faulty host.

3. There exists a failure detection mechanism. The failure of a host is detected
as soon as failure happens.

4. A second failure does not occur before the system recovers from the former
failure.

5. All VMs in a faulty host would stop working.

3.2 Task Model

A periodic task ti is characterized by a pair (Ci, Ti) parameter. Each task must
complete before its deadline, which is equal to its period in this paper. Each task
ti has a primary copy tPi and a backup copy tBi .tPi and tBi execute on different
hosts for purpose of fault-tolerance. Periodic tasks t1, t2, ..., tn are independent
and preemptive. Backup copy is usually a simplified version of its primary copy.
For the purpose of simplicity, it is assumed that primary and backup copy have
the same parameter. The backup copy has two status: active and passive. Let
Wi be the worst-case completion time (WCRT) of tPi . The recovery time of tBi
is Bi = Ti − Wi. If Bi < Ci, then set st(tBi ) to active. Because if tBi is a passive
backup copy, it would not start execute until failure occurs, and if failure happens
just at the WCRT of its primary copy, it would not have enough time to recover
from failure. If Bi ≥ Ci, set st(tBi ) to passive.

A virtualized host is denoted as hi. Each host hi can hold multiple VMs,
denoted as vmi1, vmi2, ..., vmim. For sake of convenience in comparing between



446 P. Guo and Z. Xue

different scheduling algorithms, it is assumed that each host accommodates the
same number of identical VMs.

tPi and tBi are assigned to VMs instead of to hosts directly. vm(tPi ) and
vm(tBi ) denote the VMs where tPi and tBi are allocated respectively. host(tPi )
and host(tBi ) are their corresponding hosts.

After assigning tasks to VMs, the task copies on the same VM are scheduled
by the RM algorithm. Given n periodic tasks t1, t2, ..., tn, the goal of the fault-
tolerant scheduling algorithm is to minimize the number of VMs.

To facilitate the analysis, we summarize the notations of task model in
Table 1.

Table 1. Task model parameters

Symbol Meaning

ti Task i

tPi Primary copy of ti

tBi Backup copy of ti

Ci Computation time of ti

Ti Period of ti

Wi Worst-case response time (WCRT) of tPi

Bi Recover time of backup copy tBi

hi Host i

vmij jth VM of hi

primary(vmij) Primary copies on vmij

active(vmij) Active copies on vmij

recover(vmij , hf ) Backup copies on vmij whose primary copies are on hf

st(tBi ) Status of tBi

pri(ti) Priority of ti

Ntask, Nhost, Nvm Number of tasks, hosts and VMs per host

4 Virtualization-Based Fault-Tolerant Scheduling
Algorithm VFTS

In this section, we leverage the virtualization techniques and scheduling schemes
to develop a virtualization-based fault-tolerant scheduling algorithm VFTS.
Scheduling strategies of primary, active and passive copies are discussed in detail.
The pseudocode of VFTS algorithm is presented. It should be noted that all
tasks should be re-indexed with the decreasing order of their priorities which
are inversely proportional to their periods. The backup copy is scheduled follow-
ing its primary. So the actual scheduling order is tP1 , tB1 , tP2 , tB2 , tP3 , tB3 , · · · with
T1 ≤ T2 ≤ T3 ≤ · · · .
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4.1 Scheduling Criteria

In the classic paper [6], a critical instant of a task is defined to be a particular
time when a task will get the latest finishing time.

Theorem 1. A critical instant for any task occurs whenever the task is requested
simultaneously with requests for all higher priority tasks.

As a consequence, to check whether a task is schedulable, we just need to
check its schedulability when it starts to execute with all higher priority tasks.

Joseph and Pandya proposed the sufficient and necessary condition for ver-
ifying the schedulability of a set of fixed-priority tasks on a single processor,
called Completion Time Test (CTT) [7].

Theorem 2. To check whether task ti is schedulable in a VM, its worst-case
response time (WCRT) is:

W (ti, τ) =
∑

τk∈τ

Ck�W (ti, τ)/Tk� (1)

where τ is the task set assigned to the VM with priorities equal to or higher than
ti (including ti). If W (ti, τ) ≤ Ti, then ti is schedulable in the VM.

To calculate the WCRT, an iterative method was proposed in [10]. The com-
putation time on a processor occupied by tasks in VM during [0, t] is:

W (t, τ) =
∑

τk∈τ

Ck�t/Tk� (2)

�t/Tk� is the number of periods that tk experiences during interval [0, t].
Owing to tk’s higher priority than ti, the length of the time interval occupied by
tk is Ck�t/Tk�. Let S0 =

∑
τk∈τ Ck, and iterate Sl+1 = W (Sl, τ) with l = 0, 1, 2...

until Sn = Sn+1. If Sn ≤ Ti, then ti is schedulable and its WCRT in the VM is
Sn.

Theorem 3. If vm(tPi ) ∈ hj, then vm(tBi ) /∈ hj.

Proof. Prove by contradiction. Suppose that tBi is assigned to vmjk ∈ hj , then
host(tPi ) = host(tBi ). When hj fails, all the VMs in hj fail. Thus, both primary
and backup copies of ti cannot execute. Therefore, tPi and tBi cannot be assigned
to VMs in the same host. ��
Theorem 4. If t∗i is a primary copy or active backup copy, then in case of fault
free, the WCRT of t∗i is

W (t∗i , τ) =
∑

tPk ,tBk ∈τ

Ck�W (t∗i , τ)/Tk� (3)

where τ is the primary copies or active backup copies on vm(t∗i ) with priorities
equal to or higher than t∗i (including t∗i ). If W (t∗i , τ) ≤ Ti, then t∗i is schedulable
in the VM.
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Proof. The primary copies and active backup copies always execute in fault free
case, and passive backup copies do not execute. The computation of WCRT is
similar to Theorem 2. ��
Theorem 5. If st(tBi )=passive, then in case of fault free, tBi need not execute.

Theorem 6. For primary copy tPi , in the presence of hf ’s failure (hf 	=
host(tPi )), the WCRT of tPi is

W (tPi , τ) =
∑

tPk ∈τ

Ck�W (tPi , τ)/Tk� +
∑

tBk ∈τ

Ckφ(tBk ,W (tPi , τ)) (4)

where

φ(tBk , t) =

⎧
⎨

⎩

�t/Tk� if st(tBk ) = active
1 if st(tBk ) = passive and t ≤ Bk

1 + �(t − Bk)/Tk� if st(tBk ) = passive and t > Bk

τ = {τk|τk ∈ primary(vm(tPi )) ∪ recovery(vm(tPi ), hf ), pri(τk) ≥ pri(tPi )}.

If W (tPi , τ) ≤ Ti, then tPi is schedulable in the VM.

Proof. When failure occurs, passive backup copy tBk needs to finish Ck during
its recovery time. After the recovery interval, tBk enters the periodic circulation,
and finish Ck in every period. ��
Theorem 7. For backup copy tBi , in the presence of host(tPi )’s failure, the
WCRT of tBi is

W (tBi , τ) =
∑

tPk ∈τ

Ck�W (tBi , τ)/Tk� +
∑

tBk ∈τ

Ckφ(tBk ,W (tBi , τ)) (5)

where φ(tBk , t) is the same as that in Theorem 6, and

τ = {τk|τk ∈ primary(vm(tBi ))∪recovery(vm(tBi ), host(tPi )), pri(τk) ≥ pri(tBi )}.

If W (tBi , τ) ≤ Ti for active backup copy or W (tBi , τ) ≤ Bi for passive backup
copy, then tBi is schedulable in the VM.

Proof. For passive backup copy tBk , the worst case happens when the failure
occurs in host(tPk ) just at the moment when tPk is about to finish at its WCRT,
which means the time left for tBk to recovery is shortest, i.e., Bk. tBk must accom-
plish Ck in its recovery interval with the length of Bk. ��

4.2 VFTS Algorithm

Combining the criteria and constraints stated above, the detailed description of
the VFTS algorithm is given in Algorithm 1.
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Algorithm 1. VFTS Algorithm
1 Sort tasks t1, t2, ..., tn such that T1 ≤ T2 ≤ · · · ≤ Tn

2 foreach ti in the task set do
3 foreach hj in the host set do // loop 1

4 foreach vmk in the VMs of hj do
5 (CheckNoFault,Wi) ←NoFaultCTT(tPi , vmjk)
6 if CheckNoFault == True then
7 for f = 1 → Nhost do
8 CheckFault ←FaultCTT(tPi , vmjk, hf )
9 if CheckFault == False then

10 break

11 if CheckFault == False then
12 continue

13 Allocate tPi → vmjk

14 Break out of loop 1

15 if tPi fails to be scheduled in any VM then
16 Add a new host with Nhost ← Nhost + 1

17 Allocate tPi → vmNhost,1

18 if Ti − Wi < Ci then
19 Status(tBi ) ← active
20 foreach hj in the host set do // loop 2

21 foreach vmk in the VMs of hj do
22 CheckNoFault ←NoFaultCTT(tBi , vmjk)

23 CheckFault ←FaultCTT(tBi , vmjk, htPi
)

24 if CheckNoFault==True and CheckFault==True then
25 Allocate tBi → vmjk

26 Break out of loop 2

27 else
28 Status(tBi ) ← passive
29 foreach hj in the host set do // loop 3

30 foreach vmk in the VMs of hj do
31 CheckFault ←FaultCTT(tBi , vmjk, htPi

)

32 if CheckNoFault==True and CheckFault==True then
33 Allocate tBi → vmjk

34 Break out of loop 3

35 if tBi fails to be scheduled in any VM then
36 Add a new host with Nhost ← Nhost + 1

37 Allocate tBi → vmNhost,1

Function NoFaultCTT(t∗i , vmjk) is used to check schedulability of t∗i on vmjk

in fault free case. For primary copy tPi , NoFaultCTT(tPi , vmjk) tests the schedu-
lability of τ = tPi ∪ primary(vmjk) ∪ active(vmjk) on vmjk using CTT. The
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WCRT Wi of tPi is also calculated by this function. For active backup copy tBi ,
NoFaultCTT(tBi , vmjk) tests the schedulability of τ = tBi ∪ primary(vmjk) ∪
active(vmjk) on vmjk using CTT. Passive backup copies do not need to per-
form this test because they do not execute in non-fault case.

FaultCTT(t∗i , vmjk, hf ) is used to check schedulability of t∗i on vmjk in case
hf (f 	= k) encounters a failure. The analysis is in concert with Theorem 4.

Theorem 8. The time complexity of VFTS is O(NtaskN2
hostNvm).

Proof. To assign a primary copy, at most NhostNvm VMs are tried. Each
trial requires in turn one execution of NoFaultCTT and Nhost − 1 execu-
tions of FaultCTT, in the worst case. Thus, the time complexity of VFTS is
O(Ntask)O(NhostNvm)O(Nhost) = O(NtaskN2

hostNvm). ��

5 Simulation Experiments

In order to calculate the number of VMs needed by the VFTS algorithm to
provide fault-tolerance for virtualized cloud systems, simulation experiments
are performed. Simple duplication with RMFF (DRMFF) is used to compare
with VFTS. DRMFF schedules tasks with the method of RMFF and provide
fault-tolerance by duplicating the hosts. We denote with N the number of VMs
required by VFTS algorithm, and with M the number of VMs required by
DRMFF algorithm. Since the optimal assignment of tasks to VMs is difficult
to figure out, we use the total load U = U1 + U2 + · · · + Un as the minimum and
optimal number of VMs. For simplicity of comparison, each host is assumed to
contain 8 identical VMs. Once a new host is added, 8 VMs are created simulta-
neously. The VFTS and DRMFF algorithms were developed in Matlab and run
on a PC with Intel Core i7-2600K CPU and 8 GB RAM.

Task sets with length of 100 ≤ n ≤ 1000 are generated. The maximum load
α = max{U1, U2, · · · , Un} is chosen to be 0.2, 0.5 and 0.8. Each task period Ti

is randomly distributed in the interval [1, 500], and each computation time Ci

is uniformly distributed in the interval [0, αTi]. For every chosen n and α, the
experiment is repeated for 30 times, and the average result is calculated.

Figure 1 shows the ratios between the number of VMs required by VFTS or
DRMFF and the total load. Generally the ratio increases with the increasing of
α. The increasing trend of DRMFF is less obvious than VFTS because DRMFF
does not take into account the complicated relations and constraints between
primary and backup copies, and always tries to fully fill every VM regardless
of α. For smaller number of tasks, the ratios are relatively higher because more
VMs are not fully utilized due to limited number of tasks.

Figure 2 shows a remarkable saving of VMs compared with those needed by
DRMFF. The percentage of VMs saved by VFTS is about 33% for α = 0.2, 25%
for α = 0.5 and 4% for α = 0.8 when the number of tasks is large enough.
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Fig. 1. Ratios between the number of VMs required by VFTS or DRMFF and the
total load.
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6 Conclusions

This paper considers the problem of providing fault-tolerance for virtualized
clouds with scheduling algorithms. VFTS combines the characteristics of cloud
and traditional scheduling schemes to provide simple, efficient and low-cost fault-
tolerance. VFTS assigns tasks in virtualized clouds instead of isolated computing
nodes. Compared with simple duplication fault-tolerant method, VFTS makes
use of the computing resources more efficiently. The analysis and simulation
results have verified the effectiveness of the VFTS algorithm.

Finally, future research could deal with the strategies of assignment, which
can further leverage the idle time of passive backup copy and reduce redundancy
of active backup copies.
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