
A Multi-mode Coordinate Rotation Digital
Computer (CORDIC)

Lifan Niu, Xiaoling Jia, Jun Wu, and Zhifeng Zhang(B)

College of Electronics and Information Engineering,
Tongji University, Shanghai 201804, China

{1433332,jia xiaoling,wujun,zhangzf}@tongji.edu.cn

Abstract. This paper presents a 24-bit fixed-point multi-mode Coor-
dinate Rotation Digital Computer (CORDIC) engine for VLSI imple-
mentation of Independent Component Analysis (ICA). Three different
modes are integrated for computing sine/cosine, arc tangent and square
root to save system resource. We describe the design method for decid-
ing iteration time and fixed-point bits, and present the architecture of a
pipelined VLSI implementation. An approximation method is proposed
to decrease the data to be pre-stored. The CORDIC engine is designed
and implemented with SMIC 65 nm CMOS technology. The performance
and computation results of this engine are shown to be very high-accurate
and area-efficient.

Keywords: CORDIC · ICA · Sin · Cos · Arctan · Square root

1 Introduction

The Coordinate Rotation Digital Computer (CORDIC) algorithm is an itera-
tive algorithm for computing general vector rotation. It was first brought up by
Volder [7], and then it was refined and improved by Walther [8]. CORDIC can
compute the trigonometric function, hyperbolic function, logarithm, exponential
and square root with only adds and shifts. Therefore, it is suitable for hardware
implementation and has applied in many areas including signal processor, com-
munication system and mathematic co-processor.

Independent Component Analysis (ICA) is a widely used algorithm for blind
source separation in signal processing. For very large scale integration (VLSI)
implementation of ICA, trigonometric and square root functions are neces-
sary [1,4,6], for which CORDIC is a perfect solution. The work in this paper
integrates the computation of trigonometric and square root functions in one
CORDIC engine, and improves the algorithm specially for hardware implemen-
tation. Finally we implement a 24-bit fixed-point multi-mode CORDIC that can
compute arc tangent, sine/cosine and square root in one engine with different
modes.

The remainder of this paper is organized as follows: Sect. 2 introduces
the basic principle of CORDIC. Section 2.1 introduces the improved algorithm
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Q. Chen et al. (Eds.): ChinaCom 2016, Part II, LNICST 210, pp. 345–354, 2018.

DOI: 10.1007/978-3-319-66628-0 33



346 L. Niu et al.

and design methodology. Section 4 introduces hardware architecture. Section 5
presents the timing and area results of the CORDIC engine implementation.
Section 6 is the conclusion.

2 Introduction

2.1 Overview

The basic idea of CORDIC is to approach a rotation angle by swinging a series of
fixed angles. CORDIC executes a rotation in each iteration. As shown in Fig. 1,
to rotate vector (xi,yi) by θ to get the new vector (xj ,yj):

xj = r cos(α + θ) = xi cos θ − yi sin θ
yj = r sin(α + θ) = yi cos θ + xi sin θ

(1)

Split θ into N smaller rotation angles, for the nth rotation:
(

xn+1

yn+1

)
= cos θn

(
1
tan θn

− tan θn
1

)(
xn

yn

)
(2)

For clarity, a new variable zn is used to calculate the residue angle to be
rotated. Then the final form of the rotation process is shown in (3) and (4):

(
xN

yN

)
=

N∏
n=1

cos(m1/2θi)

(
1

m1/2dn tan(m1/2θi)
−m1/2dn tan(m1/2θi)

1

)(
x0

y0

) (3)

zN = z0 +

N∑
i=1

diθi (4)

Fig. 1. The coordinate rotation



A Multi-mode Coordinate Rotation Digital Computer (CORDIC) 347

In rotation mode, zn is forced to approach zero, while in vector mode yn is
forced to approach zero.

For the convenience of hardware implementation, each rotation angle is cho-
sen to be related with 2−n as (5). With this constraint the complicated compu-
tation of arc tangent can be replaced by simple bit-shifting [3].

θn =

⎧⎨
⎩

arctan(2−n) m = 1
2−n m = 0
arctan h(2−n) m = −1

(5)

CORDIC executes circular rotation when m = 1, hyperbolic rotation when
m = −1 and linear rotation when m = 0.

After times of iteration, cosθ in (3) becomes a constant, which is defined as
the correction factor K:

K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∏
n=0

√
1

1+2−2n ≈ 0.6072 m = 1

1 m = 0
∞∏

n=1

√
1

1−2−2n ≈ 1. m = −1

(6)

Correction factor can be multiplied to the final result after the last iteration,
so the iteration can be simplified as:

⎧⎨
⎩

xn+1 = xn − mdn2−nyn
yn+1 = yn + dn2−nxn

zn+1 = zn − dnθn

(7)

Different functions are fulfilled with different choices of m and d. This work
includes three different calculating modes: sine/cosine, arc tangent and square
root. The details of parameter settings, input and output for these three modes
are shown in Table 1.

Table 1. Initialization for different modes

Mode m d Input Output

Sin/cos 1 sign(zn) x0 = 1/k, y0 = 0, z0 = θ xn = cosθ
yn = sinθ

Arctan 1 −sign(yn) x0 = 1, y0 = x, z0 = 0 zn = arctanx

Square root −1 sign(zn) x0 = x + 1/4, y0 = x − 1/4, z0 = 0 xn =
√

x

3 Improvement of Algorithm and Design Methodology

3.1 Algorithm Improvement

As shown in Eq. (6), the value of θn is changing in each iteration. These values
need to be pre-stored in implementation, which consume more area. To save



348 L. Niu et al.

hardware resource, we optimize the algorithm by an approximate method. We
know arctan(xn) can be expanded with Taylor series:

arctan(xn) = xn − x3
n

3
+

x5
n

5
− x7

n

7
+

x9
n

9
· · · (8)

When xn equals to 2−n, Eq. (8) can be further simplified:

arctan(2−n) = 2−n − 2−3n

3
+

2−5n

5
− 2−7n

7
+

2−9n

9
· · · (9)

The value of arctan(2−n) is gradually approaching 2−n as it iterates more
times. When the number of iteration time is large enough, we could replace
arctan with the first term 2−n only, thus an operation of simply shifting could
be used to save area and enhance computing speed as well.

As shown in Table 1, the calculation of square root (m = −1) is not required
to output zn, while the other two modes is irrelevant arctanh, thus the calculation
of arctanh is not needed, only arctan (m = 1) is needed to be implement as above.

3.2 Algorithm Implementation

CORDIC fulfills its function by making a specified parameter approach to zero,
zn is forced to zero for rotation mode, while yn is forced to zero for vector mode.
In VLSI implementation, it is difficult to constantly judge whether the specified
parameter has approached to zero during each iteration process, we need to fix
the iteration times. An appropriate planning of iteration times could achieve the
balance between the consumption of resource and calculation accuracy.

Figure 2 shows the relation between iteration times and absolute error. The
result shows that as iteration times increase, the calculation accuracy is higher
logarithmically. Square root requires less iteration times than the other two
modes. The calculation accuracy of square root reaches around 10−6 when iter-
ating 9 times, while the iteration number is required to be 17 for sin/cos and

Fig. 2. The relation between iteration time and accuracy



A Multi-mode Coordinate Rotation Digital Computer (CORDIC) 349

Fig. 3. The relation between fixed-point bit and accuracy

arctan modes. Therefore we choose 17 for sin/cos and arctan modes, and 9 times
iteration for square root mode.

The hardware design uses fixed-point instead of floating-point. In the process
of converting float-point number to fix-point number, proper bit-width is impor-
tant. As shown in Fig. 3, the absolute error reaches around 10−6 when the fixed-
point bit is around 20. Therefore we choose 24 bit fixed points with 20-bit decimal
places.

4 Architecture Design

4.1 Pre-processing for Square Root

For arctan mode, the output is in [−π/2, π/2] [2], and for sin/cos mode, the
available interval of input is [−π/2, π/2] [5], which does not need any initializa-
tion. While the simulation results in Fig. 4 show that the input range of square
root needs to be [1.1, 8.1], otherwise accuracy gets worse rapidly. So for square
root mode, a pre-processing is required before iteration. As shown in Fig. 5, we
need to determine whether the input number is in the specified range. If not,
shift the input number left or right by 2i bit (i for shifting times) until it is in
the range. When the calculation is done, shift the output left or right by i bit
to eliminate the impact of pre-process. As shown in Fig. 6, when input is out of
the range, with pre-process we can still get a result of high accuracy.

As shown in Fig. 7, the system uses a pipelined architecture to implement
the core calculation part. According to different input of calculation modes, the
rotation direction is decided by a multiplexer, so that addition or subtraction
would be executed in each iteration. As mentioned in III-A, value of arc tangent
of the rotation angles does not needed to be all saved as a table. As shown in
Table 2, only seven values of arctan(2−n) need to be pre-stored. When n> 6,
value of arctan(2−n) can be easily approximated by 2−i, which is achieved by
shifting in hardware implementation.



350 L. Niu et al.

Fig. 4. The available range for the original square root algorithm

Fig. 5. Flow diagram of initialization for square root mode

Fig. 6. The available range after the initial operation for square root



A Multi-mode Coordinate Rotation Digital Computer (CORDIC) 351

Fig. 7. Structure of the pipelined CORDIC

Table 2. Table of rotation angle

n Tangent Value Hex value

0 arctan 0.78539816 C90FE

1 arctan 0.46364761 76B1A

2 arctan 0.24497866 3EB6F

3 arctan 0.12435499 1FD5C

4 arctan 0.06241881 0FFAB

5 arctan 0.03123983 07FF5

6 arctan 0.01562373 03FFF

5 Results and Dissussion

The CORDIC engine is implemented by Verilog HDL at behavior-level. The sim-
ulation is performed in VCS, and its results are shown in Table 3. It can be seen
that the CORDIC engine have a high accuracy of about 10−6. For sin/cos and
arctan mode, the result is ready after 20 clock cycles as shown in Figs. 8 and 9,
respectively. For square root mode, the result is ready after 12 clock cycles when



352 L. Niu et al.

Table 3. Simulation results

Mode Input Exact result Hex result Decimal result Error

Sin 1
4
π 0.707106 0B5054 0.707111 4.6 × 10−6

3
8
π 0.923880 0EC836 0.923879 0.1 × 10−6

Cos 1
4
π 0.707106 0B504a 0.707102 4.2 × 10−6

3
8
π 0.382683 061F75 0.382680 3.5 × 10−6

Arctan 1 0.785398 0C9105 0.785405 7.1 × 10−6

2 1.107148 11B6E5 1.107152 4.0 × 10−6

Square root 6 2.449489 27311F 2.449492 2.7 × 10−6

4 2 200001 2.000001 9.5 × 10−7

Fig. 8. Simulation of mode sin/cos

Fig. 9. Simulation of mode arctan

Fig. 10. Simulation of mode square root

input is in the specified range as shown in Fig. 10. Besides the clock cycles for each
iteration, there are three more cycles for data input, initialization and choosing
output data, respectively.

The design uses 65 nm low power process. Synthesis is carried out by Design
Compiler. Placement and route(PR) use IC Compiler. The timing analysis is
performed in Primetime. Synthesis and PR is done with the low threshold voltage
devices and regular voltage devices under slow corner (1.08v/120◦C). The use of



A Multi-mode Coordinate Rotation Digital Computer (CORDIC) 353

low threshold voltage devices can save power consumption. The analysis under
slow corner leaves a margin for actual environment. The Table 4 shows the results
of synthesis and PR, namely critical path delay and cell area. The size of this
CORDIC engine is 600μm × 350μm. Design uses 1441 sequential cell to achieve
all the three calculation modes which is of high source efficiency. The Fig. 11
indicates the clock tree structure of the design. It has a 7-level clock tree to
balance the delay.

Table 4. Synthesis and pr results

Synthesis Place & route

Critical path delay 1.03 ns 1.24 ns

Combinational cell 37653 41398

Sequential cell 1441 1441

Cell area 117991.7 μm2 155176.8 μm2

Fig. 11. The clock tree structure of backend place and route

6 Conclusions

In this paper, the design and implementation of an 24-bit efficient multi-mode
CORDIC engine are proposed. This CORDIC engine can achieve high-accuracy
with appropriate fixed-point design. It is of high-efficiency with fully pipelined



354 L. Niu et al.

architecture. Instead of using various CORDIC units for different modes, it com-
bines the calculation for sine/cosine, arc tangent and square root together. This
multi-mode design makes the proposed CORDIC engine very area-efficient. It
is suitable for VLSI implementation of high-precision ICA algorithm, as well as
other applications in areas such as high-accurate biomedical signal processing,
communication system and mathematic co-processor.

References

1. Cavallaro, J.R., Keleher, M.P., Price, R.H., Thomas, G.S.: VLSI implemen-
tation of a CORDIC SVD processor. In: Proceedings of Eighth Univer-
sity/Government/Industry Microelectronics Symposium, pp. 256–260 (1989)

2. Gisuthan, B., Srikanthan, T.: Pipelining flat CORDIC based trigonometric function
generators. Proc. SPIE - Int. Soc. Opt. Eng. 33, 77–89 (2002)

3. Maharatna, K., Banerjee, S., Grass, E., Krstic, M., Troya, A.: Modified virtually
scaling-free adaptive CORDIC rotator algorithm and architecture. IEEE Trans.
Circuits Syst. Video Technol. 5, 1463–1474 (2005)

4. Ranjith, J., Muniraj, N.: FPGA implementation of optimized independent compo-
nent analysis processor for biomedical application. In: International Conference on
Computer Communication and Informatics, pp. 1–5 (2013)

5. Renardy, A.P., Ahmadi, N., Fadila, A.A., Shidqi, N.: FPGA implementation of
CORDIC algorithms for sine and cosine generator. In: International Conference on
Electrical Engineering and Informatics (2015)

6. Van, L.D., Wu, D.Y., Chen, C.S.: Energy-efficient FastICA implementation for bio-
medical signal separation. IEEE Trans. Neural Netw. 22(11), 1809–1822 (2011)

7. Volder, J.E.: The CORDIC trigonometric computing technique. Electron. Comput.
Ire Trans. EC-8, 330–334 (1959)

8. Walther, J.S.: A unified algorithm for elementary functions. In: Spring Joint Com-
puter Conference, 18–20 May 1971, pp. 379–385 (1971)


	A Multi-mode Coordinate Rotation Digital Computer (CORDIC)
	1 Introduction
	2 Introduction
	2.1 Overview

	3 Improvement of Algorithm and Design Methodology
	3.1 Algorithm Improvement
	3.2 Algorithm Implementation

	4 Architecture Design
	4.1 Pre-processing for Square Root

	5 Results and Dissussion
	6 Conclusions
	References


