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Abstract. Small cells are widely being deployed to enhance the performance of
cellular networks, which results in a random distribution of base stations as well
as a complex interference problem. Therefore, it becomes considerably chal-
lenging to derive a closed-form expression for the capacity of small cell
enhanced heterogeneous cellular network especially when the cognitive radio
(CR) technology is utilized to mitigate the possible interference. In this paper,
we first use the discrete time Markov chain (DTMC) to achieve the spectrum
mobility of macro base station (MBS) users, i.e. primary users (PUs) in the
cognitive heterogeneous cellular networks (CHCNs). Meanwhile, by modeling
MBSs and small base stations (SBSs) as two independent homogeneous Poisson
point processes (HPPPs), we propose an integral way based on stochastic
geometry (SG) to get the calculation of the interference. Simulation results show
that our capacity analysis method of CHCNs serves well in approximating the
network capacity by conquering the complex interference and the uncertainty of
spectrum mobility, which turns out to be an efficient and promising approach.

Keywords: Cognitive heterogeneous cellular networks (CHCNs) � Markov
chain � Stochastic geometry � Homogeneous Poisson point process (HPPP)

1 Introduction

The last few years have witnessed the proliferated deployment of small cells in the
cellular network, e.g., pico cell, femto cell. The small cells can bring a high network
capacity by providing heterogeneous access for indoor and outdoor hotspots. However,
they also arouse a considerably complex problem, i.e., the cross-tier interference as
well as co-tier interference. Meanwhile, the emerging of the small cells also aggravates
the irregularity of network coverage. Therefore, the traditional regular hexagon net-
work is not enough to provide the diverse rate requirement of different coverage.

Fortunately, by enabling cognitive radio (CR) technology on small cells to be aware
of and adapt to communication environments, the interference issue can be tackled
[1, 2]. The CR-enabled small base stations (SBSs) can actively acquire the information
about the channel by spectrum sensing mechanism, which conduces to avoid the pos-
sible co-channel interferences and enhance the entire network performance. However,
due to the irregular coverage of base stations and the troublesome interference problem,
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few works can give out a closed-form expression for the capacity of cognitive hetero-
geneous cellular networks (CHCNs). In addition, it becomes even more complicated
when spectrum mobility is involved. Therefore, it’s far from easy to weigh the contri-
bution of CR technology to the improvement of network capacity mathematically.

Recently, stochastic geometry (SG) wins its popularity through capturing the
topological randomness as well as acquiring tractable numerical results in the
increasingly complex networks [3–6]. Motivated by the favorable conclusions in
previous works, SG tends to be used in CHCNs. In [7], Hesham et al. utilize the SG to
model and analyze heterogeneous cellular networks from two aspects. They first exploit
SG to evaluate the load of each network tier, and then obtain the maximal frequency
reuse efficiency with spectrum sensing design for channel access by the assumption of
hard core point process (HCPP). But they only focus on the performance of cognitive
small cell network and get the outage probability for a small cell user. In [8], the
authors provide a performance analysis of two-tier HetNets with cognitive small cells
under the SG model with respect to the outage probability. They obtain the oppor-
tunistic spectrum access probability for small cell access points conditioned by the
spectrum sensing threshold. However, there are three weaknesses in the work. First, the
contribution of [8] is elaborated in the underlay fashion where the outage event of
primary users (PUs) is mainly caused by the aggregated interference from secondary
users (SUs) and noise environment. Second, only one PU is assumed in the derivation.
Third, the close-form derivation of interference from SUs to PU is obtained only in the
large-scale environment. [9] summarizes the previous work related to SG in the liter-
atures for single-tier, multi-tier, as well as cognitive cellular wireless networks. The
author points out that only few results in the context of multi-tier cellular networks are
available to CHCNs and indicates that there are opportunities for innovating techniques
which facilitate the SG modeling.

After analyzing these, we can clarify some facts and difficulties in obtaining the
capacityderivationof cognitivemulti-tier cellular networks. (i) TheobjectiveofCHCNs is
different from the conventional cognitive radio networks (CRNs) (i.e., cognitive networks
with licensed and unlicensed users). That is, we need to focus on the capacity aggregation
of both MBSs (similar to PUs in the conventional CRNs) and cognitive small cell base
stations (similar to SUs in the conventional CRNs) rather than an opportunistically uti-
lization of SUs on the unlicensed band subject to a tolerable performance degradation for
the PUs. (ii) The spectrum access is sensitive to its mobility model which affects the
capacity derivation significantly. (iii) The calculation of interference becomes even more
difficult in the CHCNs. For one thing, the small cell infrastructure confuses traditional
regular deployment, also the spectrum reuse policy, and the interference becomes com-
plicated to beobserved. For another, it is never too easy to get the channel state information
(CSI) in the multi-cell system, especially in the multi-tier networks.

In this paper, we focus on a closed-form expression for the capacity of CHCNs,
which including two parts, i.e., deriving the distribution of time slots by the discrete
time Markov chain (DTMC) and approximating the co-tier and cross-tier interference
by an integral method. In order to get the interference of the whole coverage, the
integral method takes the integral of the probability of the interference according to the
distribution of the distance from the user to its serving base station. Further, under the
adopted homogeneous Poisson point process (HPPP) model, a series of simulations
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illustrate that our proposed approach shows its superiority of weighing the network
capacity accurately and efficiently, which also takes the spectrum mobility of macro
base stations (MBSs) users into account.

The remaining sections of this paper are organized as follows. In Sect. 2, our model
with SG modeling techniques is presented. Section 3 describes the DTMC for the
purpose of analyzing the distribution of time slots and captures the capacity of CHCN
by giving a closed-form expression. In Sect. 4, we provide numerical results and
finally, Sect. 5 concludes the paper.

2 System Model

In this paper, we focus on a downlink two-tier CHCN where the users associate with the
BS (MBS or SBS) which provides the highest reference signal receiving power (RSRP).
Meanwhile, we assume that MBSs and their users use the licensed spectrum band, while
SBSs and their users act as the unlicensed users that access the channels if sensing the
vacant spectrum. Thereby, they work in an overlay fashion composing a typical cog-
nitive radio system apparently, i.e., MBS and their users work as PUs while SBS and
their users are SUs. To note that, they both serve as the cellular network, thus, both the
capacity of MBSs and SBSs need to be taken into consideration in the CHCNs. Each
time slot Tslot is divided into two periods, i.e., sensing period Ts, where SBSs and their
users scan throughout the spectrum band and data transmission period, where SBSs
access the channel if finding vacancy for MBSs. The structure of the frame is illustrated
in Fig. 1. The time for merging the sensing results and their feedback to the serving
SBSs is ignored. Here, we assume that only one user is allowed to access the channel
during the time slot within each macro cell or small cell and there is no free time slot.

Instead of assuming the MBSs and SBSs are placed deterministically in a grid
model, we adopt a HPPP model in this paper, where MBSs and SBSs accord to two
independent HPPPs with density kM and kF respectively. Also, users located in the
CHCNs accords to another HPPP with density kU, which includes X MBS users and
Y SBS users. The idea of HPPP derives from SG which aims at weighing the network
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Fig. 1. Illustration of a two-tier heterogeneous network.
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topologies from an average perspective rather than one single base station or user. It
has been shown by [9] as an equally accurate model to capture the performance of the
network compared with conventional grid model, whereas, the former is more
preferable for its tractability to describe the increasing opportunistic placed base sta-
tions in the future.

As is shown in Fig. 1, since the overlay fashion is applied in this paper, there is no
interference between two tiers, thus only co-tier interference remains. We assume that
all the MBSs and SBSs simultaneously transmit to their associated users with the same
power PM and PF. gM denotes the transmission gain of MBS user from its serving
MBS. Similarly, gF is the transmission gain of SBS user from its serving SBS. Note
that we only consider the large-scale fading for simplicity. The noise is assumed to be
zero-mean complex additive white Gaussian random variables with power PNoise. Then
the signal to interference plus noise ratio (SINR) of MBS and SBS users are given
respectively by (1) and (2).

SINRm ¼ PMgM
IM;m þPNoise

ð1Þ

SINRf ¼ PFgF
IF;f þPNoise

ð2Þ

where IM,m is the interference for MBS user m from other MBSs. Likewise, IF,f is the
interference caused by other SBSs to SBS user f.

3 Capacity Derivation of Cognitive Heterogeneous Networks

In the CHCN model, it is hard to derive the capacity due to the uncertainty of spectrum
mobility and the complex interference between users and the heterogeneous base
stations. As the DTMC advantages in analyzing the reliability and performance of
service portfolio, we consult to Markov chain to acquire the distribution of time slots.
Meanwhile, the interference is captured with HPPP assumption in a SG way.

3.1 Markov Chain Model for the Spectrum Mobility

The method of DTMC to capture the spectrum mobility is defined by its state, transfer
probability and steady probability. In what follows, we assume that MBS users arrive
in the channel with a probability of ka and depart with a probability of kd.

(1) State
Let M time slots be occupied by MBS users on the channel, and use w ¼
fwðuÞ ¼ 0 or 1; u ¼ 1; 2; . . .;Mg to represent the occupancy state of all MBS
users, in which wðuÞ ¼ 0 means that the MBS user is on the channel while

wðuÞ ¼ 1 means it is absent. Then, /ðiÞ ¼ PM
u¼1

wðuÞ ¼ i; 0� i�D denotes that

there are i MBS users in the frame and D is the number of time slots.
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(2) Transfer probability
Here, the MBS users arrive and depart in a Poisson way, and once one MBS user
arrives, a single time slot of consecutive frames will be occupied for an expo-
nentially distributed time period until it leaves. The probability of k (0� k� i)
MBS users’ arrival during the frame is given by

PAðkÞ ¼ PfNA ¼ kg ¼ ðkaTframeÞk
k!

e�kaTframe : ð3Þ

where NA is the number of MBS users who arrive at the channel during the frame
and Tframe ¼ D� Tslot means the total time of the frame.
Similarly, the probability of l (0� l� iþ k) MBS users’ departure during the
frame is given by

PDðlÞ ¼ PfND ¼ lg ¼ ðkdTframeÞl
l!

e�kdTframe : ð4Þ

where ND is the number of MBS users leaving the channel during the frame.
Therefore, in the state /ðiÞ, the probability of kMBS users’ arrival is expressed by

A i; k; lð Þ ¼
PAðkÞ i� lþ k\D

1� Pk�1

d¼0
PAðdÞ i� lþ k ¼ D

8<
: : ð5Þ

Correspondingly, the probability of l departures in state /ðiÞ is

D i; k; lð Þ ¼
PDðlÞ i� lþ k[ 0

1� Pl
q¼0

PDðqÞ i� lþ k ¼ 0

8<
: : ð6Þ

The transition probability matrix P can be derived by calculating all the state
transforms probability Pij from /ðiÞ to /ðiþHÞ. The elements of the matrix Pij is

Pij ¼ PiþH;i ¼ PððiþHÞ ij Þ ¼
Xi

k¼maxð�H;0Þ
Aði;Hþ k; kÞDði;Hþ k; kÞ; 0� i�D;�i�H�D� i ð7Þ

(3) Steady probability pðiÞ
Constructing the steady state probability pðiÞ; i ¼ 1; . . .;D as the elements of
matrix P ¼ ½pð0Þ; pð1Þ; . . .; pðDÞ�, we are able to obtain pðiÞ by finding the
solution with respect to the following condition equation.

P ¼ P � P ð8Þ

(4) The number of MBS and SBS users
The average number of MBS users during the frame can be calculated by accu-
mulating all the possible state.
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Np ¼
XD
i¼0

i� pðiÞ ð9Þ

Therefore, the average number of SBS users is given by (10).

Ns ¼ D� Np ð10Þ

3.2 The Approximating Capacity of CHCN with HPPP Assumption

In this paper, assuming that interference is captured by the density of base stations, we
consult to an integral way to derive the interference. The idea derives from “fluid
model” in [10] where the integral of the density of BSs in the whole network is used to
calculate the capacity. In the HPPP model, the probability density function (PDF) of the
distance between the serving BS and the user (denoted as r) can be given by

f ðrÞ ¼ k2pre�kpr2 ð11Þ

where k ¼ kM or kF .
As to the channel model, we only consider the power loss propagation for short.

Hence, the transmission gain in (1) and (2) can be express as gM ; gF ¼ r�a where a
denotes the path loss exponent. Taking the integral in the coverage of interfering base
stations, we can get the interference for MBS users and SBS users.

According to our assumption, only co-tier interference is considered. Therefore,
there are two kinds of interference categorized by different tiers.

(1) When the channel is occupied by MBS users, for a specific MBS user, the
interference from other MBSs is given by

IM;m ¼
Z 2p

0

Z 1

r
pMkM2pre�kMpr2 � r�adrdh ¼ 2ppM pkMð Þa2 C 1� a

2

� �
� C 1� a

2
; r

� �h i
ð12Þ

where C xð Þ ¼ R1
0 tx�1e�tdt and C x; rð Þ ¼ R r

0 t
x�1e�tdt are standard gamma

function and incomplete gamma function respectively.
(2) Similarly, when the channel is occupied by SBS users, thus, the interference from

other SBSs is as follows

IF;f ¼
Z 2p

0

Z 1

r
pFkF2pre�kFpr2 � r�adrdh ¼ 2ppF pkFð Þa2 C 1� a

2

� �
� C 1� a

2
; r

� �h i
ð13Þ

Therefore, the whole network capacity can be expressed as

C ¼ CM þCF ¼ Wg
D

½Np

XX
m¼1

log2ð1þ SINRmÞþNs

XY
f¼1

log2ð1þ SINRf Þ� ð14Þ

where W is the bandwidth of the channel, g ¼ 1� Ts=Tslot is the sensing efficient.
CM and CF stand for the capacity of macro cells and small cells respectively.
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4 Simulation Results and Analysis

To testify the proposed capacity expressions, we present several numerical metrics and
give relative analysis in this section. In the two-tier CHCN, MBSs, SBSs and users are
distributed in a HPPP way with density 4� 10�5/m2, 8� 10�4/m2 and 1:6� 10�4/m2

respectively in a circular coverage with radius 500 m. The rest of the simulation
parameters are listed in Table 1.

4.1 Comparison Between Theoretical Analysis and Simulation Result

We simulate the capacity of the network derived by integral method (theoretical
analysis) and sum method (simulation) in HPPP model in Fig. 2. It can be figured out
that the integral method has a lower capacity than that of the sum method. This is
because the BSs and users modeled by HPPPs are located in a more random way,
which brings a more conservative result by theoretical analysis compared with the
simulation. Thereby, integral method aggregates a higher interference resulting in the
lower capacity. Also, with the increase of SBSs density, the gap between the two

Table 1. Simulation parameters.

Symbol Definition Default value

PM The transmit power of MBS 20 W
PF The transmit power of SBS 0.1 W
PNoise The power of noise −174 dBm/Hz
W The physical bandwidth 1 Hz
a The path loss exponent 3
D The number of time slots in a frame 20
Tslot The lasting time of each time slot 0.577 ms
Ts The lasting time of sensing time 25 ls
ka The arrival probability of the MBS users 0.8
kd The departure probability of the MBS users 0.5

Fig. 2. Comparison between simulation result and theoretical analysis of network capacity.
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methods gets smaller (when the density of SBSs increases from 0.00063 to 0.0014/m2,
the gap decreases from 12% to 1%). This reveals that the theoretical results approach
the simulation at high density of SBSs.

4.2 Effect of the Spectrum Mobility of MBS Users

Figure 3 illustrates the network capacity under different departure probabilities with the
increase of arrival probability of MBS users. It can be observed that the network
capacity keeps growing with the increase of arrival probability of MBS users when the
departure probability is 0.2, 0.5 and 0.9. Whereas, when the departure probability is
0.1, the network capacity exhibits a slight decline. Actually, at low departure proba-
bility values, high arrival probability of MBS users impacts the capacity by aggregating
the interference, which results in a lower capacity (when the arrival probability goes
from 0 to 1, the capacity decreases 5%). Conversely, in the case of high departure
probability, there are more time slots occupied by MBS users with the increase of
arrival probability of MBS users, which brings a higher capacity.

The capacity under different arrival probabilities with variance of departure prob-
ability of MBS users is shown in Fig. 4, in which we can see there is an optimal
departure probability for each curve and it can be inferred from (4). Moreover, as is
illustrated in Fig. 4, the curves flare up at low departure probability, but show a decline
when the departure probability over certain values. The reason is that the whole
capacity includes macro cell capacity and small cell capacity and both of the two parts
have similar tendency with the whole capacity, as is depicted in Figs. 5 and 6. It can be
observed that the macro cell capacity curve has the same tendency with the whole
capacity curve while the small cell capacity curve acts conversely. In fact, in the case of
low departure probability, more users can connect to MBSs rather than SBSs with the
increasing departure probability, which leads to a higher macro cell capacity. Whereas,
when the departure probability goes higher, the total number of the MBS users in the
network becomes less, which results in a lower macro cell capacity. Opposite results
can be derived for the SBS network since that they share the same frequency during
each frame in the overlay fashion.
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5 Conclusions

In this paper, we derive the network capacity by a stochastic method in a two-tier
CHCN. A DTMC is employed to capture the spectrum mobility while an integral
method is proposed to approximate the interference. Simulation is made in a HPPP
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network model, and results show that the proposed method turns out to be an efficient
way to calculate the network capacity in CHCNs. Moreover, we also analyze the effect
of the spectrum mobility of MBS users on the network capacity. It has shown that the
arrival probability conduces to the network capacity at high departure probability and
there is an optimal departure probability for each arrival probability.
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