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Abstract. This paper investigates the problem of two dimensional (2-
D) directions-of-arrival (DOA) estimation of multiple signals in co-prime
planar arrays. The array consists of two uniform planar arrays with their
respective inter-element spacing being both larger than half wavelength,
which can enhance the resolution but at the cost of phase ambiguity. The
phase ambiguity problem can be addressed by combining the results of
two subarrays. Specifically, we apply the multiple signal classification
(MUSIC) algorithm to each subarray to acquire their respective spec-
trum; then we obtain the joint spatial spectrum, which is defined as the
product of the respective spatial spectrums; Finally, according to co-
prime property, we search over the angular field for the spectral peaks
to estimate the DOA uniquely. Finally, we verify the effectiveness of the
proposed method via simulations.

Keywords: Directions-of-arrival estimation · Two dimensional (2-D) ·
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1 Introduction

Over several decades, direction of arrival (DOA) estimation has become a cru-
cial problem in array signal processing and has been widely used in various
fields such as radar, sonar, and wireless communications [1–4]. Among various
DOA estimation methods, two dimensional (2-D) DOA estimation has drawn
a remarkable amount of attention [5–8], because their array models are more
practical in actual applications. Traditionally, the most commonly used array
is mainly uniform array geometry; however, an appropriate non-uniform array
geometry can provide higher estimation accuracy than the uniform geometry [9].
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The history of research on non-uniform array geometry can date back to
minimum-redundancy arrays [10]. The introduction of co-prime linear arrays in
[11] has created renewed interest in such geometries. A co-prime linear array
is composed of two uniform subarrays, which have co-prime integers M and N
sensors, respectively and the corresponding inter-element spacings are N and M
of half wavelength. It is proved that a co-prime array consisting of M + N −
1 sensors can provide O (MN) degrees of freedom and therefore enhance the
estimation performance [11]. Thereby, the co-prime array structure can reduce
the cost of array design and motivates the study of DOA estimation with non-
uniform co-prime arrays [12–17]. In [12], Zhou et al. proposed to search over the
total angular field for each subarray and uniquely determine the true DOAs by
finding the common peaks. To reduce the computational complexity, Weng and
Djuric in [13] proposed a projection-like approach to avoid spectral search. In
[14], the authors generalized the co-prime arrays from the viewpoint of difference
co-array equivalence and verify the performance. In [15], Tan et al. proposed
a super resolution DOA estimation approach for co-prime arrays. Recently, a
partial search based method is proposed in [16] to reduce the complexity.

To the best of our knowledge, most of the works on co-prime arrays focus on
1-D DOA estimation and cannot be directly extended to estimate 2-D DOAs.
Among various 2-D DOA methods, the classical multiple signal classification
(MUSIC) method for 2-D case as [6] can provide a reasonable resolution and
is regarded as one of the most popular techniques. In this paper, we study the
2-D DOA estimation method for co-prime planar arrays to enhance estimation
performance with reduced complexity.

In this paper, we first formulate the co-prime planar array for the 2-D case,
which includes two uniform planar subarrays of sizes M × M and N × N , and
the inter-element spacings for each subarray are N and M times of half wave-
length, respectively. Similar to [12], there exist multiple ambiguous peaks for
each real DOA in MUSIC spectrum. However, due to the co-prime property, the
common peaks correspond to the real DOAs and there are no other common
peaks except for the real DOAs. Therefore, we introduce the notation of joint
spatial spectrum, which is defined as the product of spatial spectrum of the two
subarrays. Accordingly, the joint spatial spectrum generates peaks only at the
positions of real DOAs. Consequently, by searching for the peaks of the joint
spectrum, the real DOAs can be uniquely estimated with phase ambiguity being
removed successfully. We list the main novelty of this paper as follows:

– We formulate a special array geometry of 2-D co-prime planar array, which
consists of two uniform subarrays. The non-uniform structure provides higher
resolution than the uniform structure.

– We introduce the notation of the joint spectrum, by searching the peaks
of which, the DOAs can be uniquely estimated. The proposed method can
achieve a better performance-complexity tradeoff.

– We conduct extensive simulations to verify the effectiveness of the proposed
method.
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The rest of this paper is organized as follows. Section 2 gives the model of 2-D
co-prime planar array. In Sect. 3, the proposed 2-D DOA estimation method is
presented. Simulation results are provided in Sects. 4 and 5 concludes this paper.

2 System Model

Consider a co-prime planar array geometry that includes two uniform subarrays
with size of Ms,i = Mi × Mi (i = 1, 2) sensors, where Mi denotes the sensor
number along the x and y-axis of the ith subarray, the integers M1 and M2 are
mutually co-prime. The spacing of the ith subarray is denoted as di = M

˜iλ/2,
where λ is wavelength and ˜i = 1, 2,˜i + i = 3. The sensor elements of the ith
subarray are located in the set Li = {(mdi, ndi) , 0 ≤ m,n ≤ Mi − 1}. Therefore,
the sensor elements of the entire array are located in L = L1 ∪ L2. Figure 1
shows a specific co-prime planar array geometry with M1 = 4 and M2 = 3. The
elements of two subarrays only overlap at the location (0, 0), therefore, the total

number of sensor elements is Mc =
2
∑

i=1

M2
i − 1.

Fig. 1. An example of the co-prime planar array model with M1 = 3 and M2 = 4.

Assume K far-field narrowband sources imping on the array from different
directions simultaneously. Specifically, the kth source is from angle (θkφk), where
the azimuth angle θk ∈ [0, π] is measured counterclockwise from the x-axis, and
the elevation angle φk ∈ [

0, π
2

]

is the angle between the incident direction and
the z-axis.
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The signal received by the entire array at time t (t = 1, 2, . . . , T ) is denoted as

x (t) = A(θ, ϕ)s (t) + n(t) =
K

∑

k=1

a (θk, φk)sk (t) + n(t) ∈ CMc×1 (1)

where the Mc × K steering matrix A(θ, φ) is given as

A(θ, φ) = [a (θ1, φ1) , . . . ,a (θK , φK)] (2)

Here the vector s (t) = [s1 (t) , s2 (t) , . . . , sK (t)]T is the corresponding trans-
mit signal vector, and sk (t) denotes the complex-valued transmit signal for
source k; n(t) ∈ CMc×1 denotes the additive white Gaussian noise (AWGN)
vector with zero means and variance σ2

n. The steering vector a (θk, φk) ∈ CMc×1

is the response with respect to the angles θk and φk. For the sensor at the
location (x, y), the corresponding response can be denoted as ax,y (θk, φk) =
exp (i sin φk [x cos θk + y sin θk]). Therefore a (θk, φk) is given as

a (θk, φk) =
[

ax1,y1 (θk, φk) , · · · , axMc ,yMc
(θk, φk)

]T (3)

As in Fig. 1, we consider the two subarrays. The steering vectors correspond-
ing to the kth source are

⎧

⎪

⎨

⎪

⎩

as,1 (θk, φk) =
[

ax1,1,y1,1 (θk, φk) , · · · , ax1,Ms,1 ,y1,Ms,1
(θk, φk)

]T

,

as,2 (θk, φk) =
[

ax2,1,y2,1 (θk, φk) , · · · , ax2,Ms,2 ,y2,Ms,2
(θk, φk)

]T (4)

where (xi,j , yi,j) is the location of sensors, and the subscript i and j denote the
ith subarray and jth sensor, where i = 1, 2 and 1 ≤ j ≤ Ms,i. Then the received
signal vectors are respectively defined as

{

xs,1 (t) = As,1(θ, ϕ)s (t) + n(t) ∈ CMs,1×1

xs,2 (t) = As,2(θ, ϕ)s (t) + n(t) ∈ CMs,2×1 (5)

where As,1(θ, φ) = [as,1 (θ1, φ1) , . . . ,as,1 (θK , φK)] ∈ CMs,1×K and As,2(θ, φ) =
[as,2 (θ1, φ1) , . . . ,as,2 (θK , φK)] ∈ CMs,2×K are the steering matrices for the first
and second subarrays, respectively.

3 MUSIC Spectrum and Proposed Method

To estimate 2-D DOAs, in this section, we first use the classic 2-D MUSIC
approach for the two subarrays, where phase ambiguity problem arises due to the
larger inter-element spacing. According to the co-prime property, the two spatial
spectrums have common peaks only at the positions of real DOAs. Therefore, we
can uniquely estimate the DOAs by finding the peaks of joint spatial spectrum,
which is defined as the product of the spectrums of the two subarrays.
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3.1 MUSIC Spectrum

The covariance matrices of data vector (5) are obtained as
{

R1 = E
[

xs,1(t)xH
s,1(t)

]

= As,1(θ, φ)RssAH
s,1(θ, φ) + σ2

nIMs,1

R2 = E
[

xs,2(t)xH
s,2(t)

]

= As,2(θ, φ)RssAH
s,2(θ, φ) + σ2

nIMs,2

(6)

where Rss
Δ= E

{

s (t) sH (t)
}

is the source covariance matrix. In practice, the
theoretical array covariance matrix Ri given in Eq. (6) is unavailable and it is
usually estimated by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̂R1 = 1
T

T
∑

t=1
xs,1(t)xH

s,1(t)

̂R2 = 1
T

T
∑

t=1
xs,2(t)xH

s,2(t)
(7)

where T is the number of snapshots. The eigenvalue decomposition (EVD) of
(7) can be expressed as

{

̂R1 = ̂S1
̂Λ1,s

̂SH
1 + ̂G1

̂Λ1,n
̂GH

1
̂R2 = ̂S2

̂Λ2,s
̂SH
2 + ̂G2

̂Λ2,n
̂GH

2

(8)

where ̂Si and ̂Gi are the estimated signal- and noise-subspace matrices, respec-
tively. The MUSIC [6] spatial spectrum are obtained as

⎧

⎨

⎩

PMUSIC,1(θ, φ) = 1

aH
s,1

(θ,φ)̂G1
̂GH

1 as,1(θ,φ)

PMUSIC,2(θ, φ) = 1

aH
s,2

(θ,φ)̂G2
̂GH

2 as,2(θ,φ)

(9)

We plot the MUSIC spectrum of each subarray in Fig. 2. In the next section,
we analyze the problem of phase ambiguity, which is caused by the larger distance
between adjacent elements.

3.2 Joint Spectrum and Proposed Method

In the two decomposed subarrays, due to the large distance between adjacent
sensors, there exists the problem of phase ambiguity [12]. Figure 2(a) and (b)
shows the MUSIC spectrum for each decomposed subarray. As can be seen, there
exist multiple peaks for each source. The DOA cannot be uniquely estimated by
a single subarray. Then we consider combining the results of the two subarrays.
For each source, it must generate a peak at the position of real DOA, i.e., there
exists at least one common peak for the two subarrays. However, due to the
special property of the co-prime structure, there are no common peaks except
for the real DOAs. Therefore, we define the joint spectrum as

PMUSIC(θ, φ) = PMUSIC,1(θ, φ) × PMUSIC,2(θ, φ) (10)

In the joint spectrum PMUSIC(θ, φ), the peaks are only generated at the
positions of real DOAs. We plot the joint spectrum PMUSIC(θ, φ) as shown
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Fig. 2. The normalized spatial MUSIC spectrum with M1 = 3 and M2 = 4: (a) the
spectrum of the first subarray, (b) the spectrum of the second subarray, and (c) the
joint spectrum. The true DOA of the source is (θ, φ) = (90◦, 45◦).

in Fig. 2(c). It is quite clearly that although there exists the problem of phase
ambiguity in each subarray, we can eliminate it by combing the results of each
subarray. Consequently, by searching for the peaks of the joint spectrum, the
real DOAs can be uniquely estimated.

In 2-D MUSIC based DOA estimation methods, since they all involve a
tremendous 2-D spectral search step, the complexity of which is much heav-
ier than that of EVD [18]. Therefore, we approximately compute the com-
plexity in terms of spectral search. The complexity of 2-D MUSIC is roughly
denoted as O

(

J
(

M2
1 + M2

2

)2
)

, where J denotes the number of spectral points
over the total angular field. The complexity of the proposed method is about
O (

J
(

M4
1 + M4

2

))

. Hence, the computational complexity of proposed method is
reduced, as compared to the 2-D MUSIC method.
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4 Numerical Results

We validate the estimation performance of the proposed method via simulations
in this section. We exhibits numerical results to compare the proposed method
for co-prime planar arrays with that of 2-D MUSIC method for uniform planar
arrays. The two decomposed uniform arrays of the co-prime planar arrays are of
the size M1 × M1 and M2 × M2, with M1 = 3 and M2 = 4. For fair comparison,
the traditional uniform planar array is set with the size of 4 × 6. The searching
interval is set as 0.1◦ for all methods. The root mean square error (RMSE),
defined as

RMSE =

√

√

√

√

1
QK

Q
∑

q=1

K
∑

k=1

(

(

θk − ̂θ
(q)
k

)2

+
(

φk − ̂φ
(q)
k

)2
)

(11)

is used as the performance metric. Here Q is the total number of Monte-Carlo
trials.

(

̂θ
(q)
k , ̂φ

(q)
k

)

is the estimate result of the kth true DOA at the qth trial, q =
1, 2, . . . , Q. In the section, Q = 400 rounds of Monte-Carlo runs are conducted.

First, we consider the case that there exists only one source at the DOA
(20◦, 30◦). Figure 3 shows the RMSE performance of different methods versus
SNR when the snapshot number T = 100 and T = 400, respectively. Figure 4
plots he RMSE performance different methods versus the snapshot number when
SNR = 0 dB and SNR = 5 dB, respectively. As is shown, with the increase
of SNR and the snapshot number, the RMSE performance of the two meth-
ods improves gradually. As compared with 2-D MUSIC, the proposed method
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Fig. 3. RMSEs of different methods versus SNR with a single source at the DOA
(20◦, 30◦).
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Fig. 4. RMSEs of different methods versus the snapshot number with a single source
at the DOA (20◦, 30◦).
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Fig. 5. RMSEs of different methods versus SNR with a single source at the DOAs
(20◦, 30◦), (60◦, 40◦), and (80◦, 60◦), respectively.

provides superior estimation performance. Since the complexity of the proposed
method is smaller than 2-D MUSIC, therefore, the proposed method can achieve
a better performance-complexity tradeoff.

For the case of three signal sources, Figs. 5 and 6 show the RMSE performance
versus SNR and the snapshot number, respectively. The three desired sources
are at the DOAs (20◦, 30◦), (60◦, 40◦), and (80◦, 60◦), respectively. All the other
simulation parameters are the same as the case of one signal source. As can be
seen, the proposed method is always better than the 2-D MUSIC method across
the whole SNR range and snapshot parameter range.
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Fig. 6. RMSEs of different methods versus the snapshot number with three sources at
the DOAs (20◦, 30◦), (60◦, 40◦), and (80◦, 60◦), respectively.

5 Conclusion

In this paper, we have constructed a special array geometry of 2-D co-prime
planar arrays, which can be decomposed into two uniform planar subarrays with
the distance between adjacent sensors larger than the half-wavelength. For a
single source, there exist multiple ambiguous DOAs in each subarray. To elimi-
nate ambiguity, we introduced the notion of joint spectrum which is defined as
the product of the 2-D MUSIC spectrum of the two subarrays. By utilizing the
co-prime property, the real DOA can be uniquely estimated by searching for the
peak of the joint spectrum. Extensive simulations have been conducted to verify
the effectiveness of the proposed method and results are compared with that
from the classic 2-D MUSIC method.
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