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Abstract. Goodness of Fit tests have been used to find available spec-
trum with excellent detection performance in Cognitive Radio System.
To extend those works, in this paper, we reformulate the spectrum sens-
ing as a unilateral Goodness of Fit testing problem. With difference to
previous available works, a random variable that obeys central F distri-
bution with presence of primary user (PU) signal and a non-F distrib-
ution with absence of PU signal, which provides technical support for
achieving blind spectrum sensing; furthermore, inspired by the thought
of unilateral hypothesis test, we apply Right Anderson Darling (RAD)
test to achieve bind spectrum sensing and derive a blind spectrum sens-
ing called RAD sensing. Finally, the validness of proposed algorithm is
proved by enormous Monte Carlo simulations.
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1 Introduction

Cognitive radio (CR) is a dynamic spectrum management technology by means
of finding “spectrum holes” and making full use of idle spectrum, which is
designed to solve spectrum shortage. Spectrum sensing, as a prerequisite and
basis technology for CR, is to monitor spectrum state and detect “spectrum
holes” in order to avoid interference to the primary user (PU) [1].

To this end, the common spectrum sensing algorithms consist of Cyclosta-
tionary Feature Detection (CFD) algorithm, Matched-Filter detection (MF),
Energy Detection (ED), eigenvalue based spectrum sensing and Goodness of
Fit (GoF) based spectrum sensing [2]. For examples, the PU signal (i.e., sig-
nal waveform, modulation, etc.) must be as a prior information, in addition, MF
has relatively high requirement for synchronization [3]; ED algorithm is the most
common method because of its low complexity, however it is sensitive to noise
uncertainty, which results in low robustness and difficulty in setting threshold [4].
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To overcome this difficulty, algorithms based on eigenvalue are proposed such as
Maximum Minimum Eigenvalue (MME) [5] and generalized likelihood ratio test
(GLRT) [6] based spectrum sensing. The proposed algorithms are free of noise
uncertainty but at the cost of high computational complexity.

Recently, Goodness of Fit (GoF) test, as a nonparametric hypothesis test, has
been widely used in cognitive radio system via testing whether the received signal
comes from the assumed distribution [7–13]. In this case, the spectrum sensing
problem is transformed into a GoF testing problem and GoF test (i.e., AD
criterion) is used to examine it. To be more explicit, we firstly assume the received
signal obeys a particular distribution with the absence of PU signal and deviates
from the distribution with the presence of PU signal, and then exploit the GoF
test to solve the above problem. For instance, Wang assumes that the PU signals
remain the same during the sampling period due to the fact that PU signals
are often narrowband signal whose envelope changes very slowly after down-
conversion, low pass filtering and sampling at CR system, in such hypothesis, the
author first presents Anderson Darling (AD) sensing, where the spectrum sensing
is converted into check whether the received signal obeys the normal distribution
or not [7]. In addition, the performance of AD sensing is evaluated through
enormous Monte Carlo simulations and prove that AD sensing outperforms ED.
However, the noise power is needed for AD sensing [8]. To achieve blind spectrum
sensing, a new random variable is constructed and the spectrum sensing problem
is reformulated as a Students testing problem; then the AD test is used to achieve
spectrum sensing [9]. Similarly, the characteristic function is also exploited into
spectrum sensing; then a blind spectrum sensing based on characteristic function
and AD test (CAD) is proposed [9]. Afterwards, Shen extended it into MISO [10]
and MIMO CR system [11]. However, the spectrum sensing algorithms based on
characteristic function have heavy complexity compared to AD sensing [7] and
Students distribution based spectrum sensing [9].

In this paper, from another perspective to view the spectrum sensing based
on GoF test, we extend the above works [7–11] and reformulate the spectrum
sensing as a unilateral F distribution testing problem. In addition, we construct
a random variable and prove that it obeys a central F distribution when the PU
signal is not transmitted and a non-F distribution when the PU signal is trans-
mitted. The constructed random variable provides technical support for achiev-
ing blind spectrum sensing since it is free of noise power. Inspired by [14], the AD
criterion is suited to two-sided hypothesis test problem due to the fact that the
AD criterion gives equal weight to differences between empirical and theoreti-
cal distribution functions corresponding to all the observation and the spectrum
sensing problem is transformed as a unilateral F distribution testing problem
in this paper. Therefore, we apply the Right AD (RAD) criterion [14], which
addresses the difference between the empirical distribution and assumed distri-
bution in right tail, to check whether the constructed random variable comes
from central F distribution or not and present a blind spectrum dubbed RAD
sensing. Finally, the validness of proposed algorithm is proved by the enormous
Monte Carlo simulations.
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2 System Model

Without loss of generality, spectrum sensing is transmitted as a binary hypothe-
sis testing problem: H0 denotes the null hypothesis (absence of the primary user)
and H1 stands for the alternative hypothesis (presence of the primary user). To
be more explicit, the spectrum sensing mathematical model can be described as

{
xi = wi, H0

xi =
√

ρu + wi, H1
(1)

Where xi is the received signal at time i (i = 1, 2, ..., N); wi represents addi-
tive white Gaussian noise (AWGN) with mean zero and variance σ2, that is,
wi ∼ N(0, σ2); u is the signals transmitted by PU, ρ meets SNR = 10 lg (ρu2/σ2)
and SNR is signal-to-noise ratio (SNR). We adopt the PU signal model in
[7–12] and assume that u = 1. Therefore, when SNR remains unchanged, xi

obeys Gaussian distribution, that is,

xi ∼
{

N(0, σ2) , H0

N(kσ, σ2) , H1
(2)

where k =
√

ρ/σ =
√

100.1SNR.

3 Spectrum Sensing as Goodness of Fit Testing

Generically, achieving blind spectrum sensing based on GoF test has two steps.
The first step is to construct a random variable, which is free of noise variance
and has obvious difference between H1 and H0, so as to formulate the spectrum
sensing as GoF testing problem. The second step is to find a powerful GoF
criterion to verify the above problem. In the following, we will obtain a random
variable with irrelevance of noise variance and formulate spectrum sensing as
GoF testing problem.

First, we divide the received signals x1, x2, ..., xN into L(L < N) parts, each
part has M = N/L data. Thus, the mean and variance of lth (l = 1, 2, ..., L)
sample can be expressed as, respectively

x̄l
Δ=

1
M

Ml∑
i=1+M(l−1)

xi (3)

s2l
Δ=

1
M − 1

Ml∑
i=1+M(l−1)

(xi − x̄l)
2 (4)

Lemma 1. Let’s denote a new random variable Tl
Δ= Mx̄2

l

s2
l
, if xi ∼ N(0, σ2), the

variable Tl obeys the central F distribution with 1 and M − 1 degrees of freedom
respectively.
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Proof. If x̄l ∼ N(0, σ2/M), it is obvious that Mx̄l/σ2 ∼ χ2
1 after normalization

and square. Note that χ2
1 is central chi-square distribution with 1 degree of

freedom and noncentral parameter k2M . In addition, the random variable (M −
1)s2l /σ2 obeys central chi-square distribution with M − 1 degrees of freedom
according to Cochran Theorem [15]. Based on the above analysis, it is easily
obtained that Mx̄2

l /s2l has central F distribution with 1 and M − 1 degrees of
freedom respectively, that is, Tl ∼ F1,M−1.

Lemma 2. If xi ∼ N(kσ, σ2), the variable Tl obeys the noncentral F distribution
with 1, M − 1 degrees of freedom and noncentral parameter k2M respectively,
that is, Tl ∼ F1,M−1,k2M .

Proof. If x̄l ∼ N(kσ, σ2/M), it is easily to find that Mx̄l/σ2 ∼ χ2
1,k2M after nor-

malization and square. Note that χ2
1,k2M is non-central chi-square distribution

with 1 degree of freedom and noncentral parameter k2M . Similarly, according
to Cochran Theorem [15], the random variable (M − 1)s2l /σ2 obeys chi-square
distribution with M − 1 degrees of freedom. Therefore, it is easily obtained that
Mx̄2

l /s2l has noncentral F distribution with 1, M − 1 degrees of freedom and
noncentral parameter k2M respectively, that is, Tl ∼ F1,M−1,k2M .

From the Lemmas 1 and 2, when there is no PU signal within the desired
frequency band, the random variable Tl comes from the central F distribution
with 1 and M − 1 degrees of freedom; when the PU signal is transmitted within
the desired frequency, the random variable Tl obeys the noncentral F distribution
with 1, M −1 degrees of freedom and noncentral parameter k2M . Note that the
probability density function (PDF) of the noncentral F distribution deviates
rightward from the central F distribution.

To sum up, the spectrum sensing can be described as the following GoF
testing problem, {

Tl obeysF1,M−1, H0

Tl deviates rightward fromF1,M−1, H1
(5)

4 Right-Anderson Darling Sensing

In this section, in order to find “spectrum holes”, GoF test is used to examine
the above problem that is described in (5) via measuring the distance between
empirical Cumulative Distribution Function (CDF) and assumed CDF. Most
previous works utilize AD criterion to achieve spectrum sensing due to effective-
ness for two-sided hypothesis testing problem. The AD criterion can be written
as

A2
L = L

∫ +∞

−∞
[GL(T ) − G0(T )]2

dG0(T )
G0(T )(1 − G0(T ))

(6)

where L is the number of constructed random variable Tl; (G0(T )(1−G0(T ))−1 is
nonnegative weight function. G0(T ) is the assumed CDF; GL(T ) is the empirical
CDF and can be calculated by

GL(T ) = |{i : Ti ≤ T, 1 ≤ i ≤ L}| (7)
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where |•| is indicates cardinality. From (6) and [14], AD criterion is obviously not
the best choice for unilateral hypothesis test since it gives equal weight to both
tails of distributions and not utilizes all of unilateral hypothesiss feature(i.e.,
GL(T ) − G0(T ) is always less than zero in theory when there has transmitted
PU signal, in this case, the absolute of GL(T )−G0(T ) is bound to lead to perfor-
mance loss). To surmount this problem, based on the AD criterion, Jin et al. [13]
proposes a unilateral AD (UAD) criterion using GL(T )−G0(T ) rather than the
absolute of GL(T ) − G0(T ) in (6); furthermore, the author verify that the UAD
criterion is more powerful for unilateral hypothesis via Monte Carlo simulation
compared to AD criterion. However, the theoretical detection threshold only is
gotten via Monte Carlo simulation, which hinder the field of application.

Subsequently, sinclair proposed a more power GoF test dubbed as RAD cri-
terion for unilateral hypothesis via modifying the nonnegative weight function
and giving large weight to the right tail [14]. Moreover and fortunately, the
author gives the way to calculate accurate theoretical detection threshold and
prove that RAD test is more powerful for unilateral hypothesis compared to AD
criterion.

In this paper, we select RAD criterion to test unilateral hypothesis due to its
effectiveness for testing (5), and apply it to spectrum sensing, yielding a blind
spectrum sensing dubbed RAD sensing. The RAD test statistic is given by

R2
L = L

∫ +∞

−∞
[GL(T ) − G0(T )]2

dG0(T )
(1 − G0(T ))

(8)

By breaking the whole integral in (8) into L parts, it is easy to show that it
can be rewritten as

R2
L =

L

2
− 2

L∑
n=1

Zn − 1
L

L∑
n=1

(2n − 1) ln(1 − ZL+1−n) (9)

where Zn = G0(Tl). Once the R2
L is acquired, it will be compared with a thresh-

old λRAD using the following detection criterion
{

R2
L ≥ λRAD,H1

R2
L < λRAD,H0

(10)

According to [14], we can find a function to describe the relationship between
threshold and false alarm probability (Pf ) for RAD criterion. The functions is
described as,

Pf = 0.889(1.835λRAD)−1/2 exp(−1.835λRAD) (11)

where the λRAD is the detection threshold. For a given Pf , we can approximately
calculate the λUAD using formula (11). For examples, when Pf = 0.05, λUAD =
1.303; when Pf = 0.1, λUAD = 2.060.

In summary, RAD sensing algorithm can be concluded as follows
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Step 1: For a given false alarm probability, calculate decision threshold λRAD.
via formula (11);

Step 2: Compute via formula (9);
Step 3: Make a conclusion according to formula (10).

5 Simulation Results

In this section, simulation is implemented using Matlab and detailed analysis is
given in order to compare the performance of five algorithms (i.e., AD sensing,
ED method, CAD sensing and RAD sensing, AD-F sensing). Note that AD-
F sensing presents that AD criterion is used to test (5). The performance is
assessed via the maximum of detection probability in accord with a certain false
alarm probability. Note that noise variance is not needed for RAD, AD-F, CAD
sensing.
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Fig. 1. ROC curves for four methods over AWGN channel with SNR = −8 dB, L = 64

For assessing the performance of RAD sensing, Fig. 1 gives receiver operating
curves (ROC) of four algorithms with SNR = −8 dB and N = 64 over Additive
White Gaussian Noise (AWGN) Channels. As is shown in Fig. 1, AD sensing has
the best detection performance among four algorithms. For example, when Pf =
0.1, the detection probabilities of AD sensing, RAD sensing, AD-F sensing and
AD are about 0.92, 0.91, 0.84 and 0.39 respectively. It is worth noting that RAD
sensing outperforms AD-F sensing since the RAD criterion is more powerful than
AD criterion for unilateral alternative hypothesis, which is corresponding to a
practical case. Note that the noise variance is not needed for RAD sensing and
AD-F sensing.

Figure 2 presents the detection probabilities of AD sensing, CAD sensing,
RAD sensing with respect to different SNRs for N = 64 and Pf = 0.05 in the case
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of quasi static fading channel. In the quasi static fading channel, the channel gain
is assumed to obey the standard normal distribution in this simulation. From
Fig. 2, on one hand, the performance of AD sensing is also great than RAD and
CAD because the noise variance is needed for AD sensing; on the other hand, it
is not hard to find that RAD sensing has best detection probability when L = 1.
Note that with the absence of noise variance, in this case, RAD algorithm has
a marginal performance loss compared to AD sensing with the noise known and
slightly outperforms the CAD sensing. Note that CAD sensing dose not need
noise variance.
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Fig. 2. Detection probability against SNRs for three methods over a quasi static fading
channel with Pf = 0.05, L = 64

6 Conclusion

In this paper, we construct a variable random and formulate the spectrum sens-
ing as a unilateral GoF testing problem. Then a powerful GoF test called RAD
criterion is applied to examine it and a blind spectrum sensing dubbed RAD
sensing is proposed. Both simulation and analysis demonstrate that the RAD
sensing has excellent performance without the need of noise uncertainty. For
instance, RAD sensing is better than CAD sensing and has a ignorable perfor-
mance loss compared to AD sensing. Note that the noise variance is needed for
AD sensing but is not needed for CAD sensing. In further, we are interested to
extend our work into MISO CR system and MIMO CR system.
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