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Abstract. Most existing research on controller placement in Software-
Defined Networking (SDN) investigated controller placements without
jointly taking into account both the communication reliability and the
communication latency between controllers and switches if any link in
the network fails. In this paper, we first introduce a new latency metric
that considers the communication delay between the switches and the
controllers with and without the single-link-failure. We then formulate a
novel SDN controller placement problem with the aim to minimize the
communication delay, for which we propose an efficient algorithm. We
also show that there is a non-trivial trade-off between a primary path
and its backup path in terms of communication delay. We finally conduct
experiments through simulations. Experimental results demonstrate that
the proposed algorithm is very promising.

Keywords: SDN · Multiple controller placements · A single link fail-
ure · The latency · Placement algorithms

1 Introduction

Software-Defined Networking (SDN) is a new networking paradigm that decou-
ples the control plane from the data plane, making the network management
much simpler and flexible [1]. Multiple SDN controllers [2–4] can improve the
system performance in terms of scalability, delay, etc. through intelligent con-
troller placements.

Lots of effort on controller placements has been taken in recent years, which
focuses mainly on which locations the controllers should be placed, and how
to map each switch to one of the placed controllers to minimize the accumu-
lated communication latency between switches and their controllers. For exam-
ple, Heller et al. [5] tackled the controller placement problem with the aim to
minimize the node-to-controller propagation latency, and reduced the problem
to the facility location problem. Yao et al. [6] minimized the total cost of flow
set-up requests from switches to controllers, where each switch was assigned a
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weight that is defined as the product of numbers of flow requests and the delay
from each switch to the controller. Yao et al. [7] placed the controllers to the
network to minimize the maximum latency under the constraints on controller
capacities.

The communication reliability is another important concern in controller
placements in SDNs [8]. Hock et al. [9] introduced a resilience framework to
cope with the resilience of link outages by proposing a Pareto-based optimal
controller placement method. Müller et al. [10] proposed a controller placement
strategy to maximize the number of node-disjoint paths between each switch and
its controller. Hu et al. [11] introduced a new metric, referred as the expected
percentage of control path loss, to maximize the reliability of control networks.
Ros and Ruiz [12] proposed a strategy that connects each switch to a subset of
controllers instead of a single one to ensure the required reliability.

Notice that a high latency in the backup paths between controllers and
switches will degrade the entire network performance. To the best of our knowl-
edge, very little attention in literature has ever been paid on the latency between
the failure-free and a single-link-failure cases in SDNs. In this paper, we will deal
with the multiple controller placements in an SDN with an objective to minimize
the total latency of both primary and backup paths.

The main contributions of this paper are as follows. We investigate the con-
troller placement problem to reduce the latency with and without a single-link-
failure. We define a novel metric integrating the latency in both primary and
backup paths, and propose an efficient algorithm for multiple controller place-
ments based on the proposed placement metric. We also conduct experiments
through simulations to evaluate the performance of the proposed algorithm.
Experimental results demonstrate the proposed algorithm is very promising.

The rest of the paper is organized as follows. The network model is intro-
duced, and the problem is precisely defined in Sect. 2. The proposed algorithm
is presented in Sect. 3. The performance evaluation of the proposed algorithm is
given in Sect. 4, and the conclusions are detailed in Sect. 5.

2 Problem Formulation

We model an SDN network as an undirected graph G = (V,E), where V is the
set of switches (or nodes) and E is the set of links. Each controller will be co-
located with a switch [9], and each switch is controlled by only one controller. We
assume that there is at most one link failure in the network [13]. The notations
used in the paper are listed in Table 1.

A primary path pi,k needs to be set up between a switch si and its corre-
sponding controller ck. In case a link in path pi,k fails, a backup path needs
to be built to replace the failed primary path. In this paper we aim to find a
proper location for each controller, and determine the exact mapping between the
controllers and the switches, with the objective to minimize the average accumu-
lated latency between switches and controllers. In other words, our optimization
objective is to
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Table 1. Table of notations

Notation Definition

si Node/switch i

(i, j) The link between nodes i and j

ck Controller ck

C Controller set

uk The processing capacity of controller ck

ri,k The number of requests from switch si to the mapped controller ck

xi,k Indicate whether switch si is mapped to controller ck (= 1) or not
(= 0)

yi,k Denotes whether controller ck is placed onto switch si (= 1) or not
(= 0)

pi,k The link set of the primary path between switch si and controller ck

lpi,k The latency in the primary path between switch si and controller ck

lbi,k,i′,j′ The latency in the backup path between switch si and controller ck
under link (i′, j′) failure

li,k The accumulated latency in the primary path and backup paths
between switch si and controller ck

Minimize:
|V |∑

i=1

|C|∑

k=1
li,k

|S| .
(1)

Subject to:

li,k = λ1l
p
i,k + λ2

∑

(i′,j′)∈pi,k

lb
i,k,i′,j′

|pi,k| ,
(2)

|C|∑

k=1

xi,k = 1, ∀si ∈ V , (3)

|V |∑

i=1

yi,k = 1, ∀ck ∈ C, (4)

yi,k ≤ xi,k, ∀si ∈ V ,∀ck ∈ C, (5)

|V |∑

i=1

xi,k · ri,k ≤ uk, ∀ck ∈ C. (6)

Equation (2) defines the accumulated latency in the primary path and backup
path between a switch si and its controller ck, where parameters λ1 and λ2(λ1 +
λ2 = 1) are constant weights used for weighting between the two latency sources.
The latency of the backup path takes into account all possible failures of links in
the primary path. Equation (3) ensures that each switch is mapped to exactly
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one controller. Equation (4) mandates that each controller is placed onto exactly
one switch. Equation (5) dictates that switch si is mapped to controller ck if
controller ck is placed onto switch si. Equation (6) signifies that the number of
requests from its switches to a controller cannot exceed the computing capacity
of the controller.

3 Algorithm for Controller Placements

It is known that the controller placement problem with the aim to minimize the
accumulated latency of all primary paths is a NP-hard problem [5]. Clearly, the
controller placement problem in this paper is NP-hard too, as the former is a
special case of our problem where the accumulated latency of backup paths has
not been incorporated into the optimization objective.

In this section, we propose a Latency-Aware Reliable Controller placement
algorithm (LARC) for the problem. A switch is mapped to a controller by the
shortest path, and the path cost is the total weight of all the links that the path
traverses. We create an auxiliary graph with each link cost incorporating both
primary path latency and average path latency upon the link failure. We place
each new controller on the auxiliary graph by searching the location that incurs
the least total path cost between the switches and the controllers. Algorithm
LARC consists of two stages.

Stage one: A weighted auxiliary graph, G′ = (V ′, E′), is constructed from
the SDN G which will be used for the controller placements. Each edge in E′ is
assigned a weight that is the accumulated latency on both primary and backup
paths.

Stage two: Determine the location of each to-be-placed controller and map
each switch to one of the controllers, by utilizing the auxiliary graph and the
proposed metric for controller placements.

3.1 The Construction of the Auxiliary Graph

The weighted auxiliary graph G′ = (V ′, E′) is constructed from the SDN G =
(V,E) as follows, where V ′ = V and E′ = E. Denote by wi,j the weight of link
(i, j). For the failure of link (i, j), we calculate the average path latency wf

i,j

between all pairs of nodes. The new weight of link (i, j) in G′, w′
i,j , is calculated

by Eq. (7), where weights λ1 and λ2 are constants with λ1 + λ2 = 1.

w′
i,j = λ1wi,j + λ2w

f
i,j . (7)

3.2 Controller Placement

The detailed algorithm is given in Algorithm1, which places the controllers on
the network based on the auxiliary graph, and maps each switch to one of the
controllers. Specifically, the algorithm proceeds iteratively using the greedy strat-
egy. Within each iteration, a single controller is placed. This procedure continues
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until all K controllers are placed. For each controller ck, Algorithm 1 computes
the cost of placing it at a location v, which is the total cost of the shortest
paths between all unassigned switches and controller ck located at v (see steps
3–7 of the algorithm). It then chooses a location v with the minimum cost, and
map those unassigned switches to controller ck one by one until the computing
capacity uk of controller ck is reached (see steps 8–11 of the algorithm). Once
controller ck has been placed at location v, the path cost of mapping a switch
to pre-placed controller may be reduced by mapping the switch to controller ck.
Therefore, we perform a procedure Remap, to change the mapping relationship
between all placed controllers and the switches assigned to them.

Algorithm 1. Controller Placement
Input: Auxiliary graph G′ = (V ′, E′)
Input: Set of switches S
Input: Number of controllers K
Output: Set of locations placed with controllers Cp

Output: Mapping relationship between switches and controllers
1: Vp = V ′,Cp = ∅,S′ = S;
2: for k = 1...K do
3: for each location v ∈ Vp do
4: Assume controller ck is placed at location v;
5: Find the shortest path between each switch si ∈ S′ and a controller ck at

location v in G′, and assume the cost of the path is cpi,v;
6: Evaluate ccv =

∑
i∈S′c

p
i,v the total cost of the paths from all the switches in S′

to controller ck at location v;
7: end for
8: Choose the location v with the least cost ccv to place controller ck;
9: Sort the switches in S′ in the non-descending order of path cost cpi,v;

10: Map the switches to controller ck iteratively provided that the mapping does
not exceed the computing capacity uk of the controller, assuming that Sm is the
mapped switch set;

11: Cp = Cp

⋃{v},S′ = S′ − Sm,Vp = Vp \ v;
12: Remap;
13: Relocate;
14: end for

Procedure Remap proceeds iteratively. Within each iteration, for a given
switch si that has been mapped to a controller, the procedure will calculate the
accumulated delay of mapping switch si to each controller, and find the controller
ck that incurs the least accumulated delay. Switch si is then mapped to controller
ck if this mapping will not exceed the computing capacity of controller ck.

Changing the location of a placed controller may also reduce the delay
between the controllers and switches. Algorithm 1 performs Relocate to further
reduce the mapping cost. For each controller ck that has been placed at a loca-
tion, Relocate evaluates whether deploying each controller ck onto an assigned
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switch location v will reduce the total delay between the switches and the con-
trollers. The total delay is the cost sum of the minimum cost paths between all
assigned switches to controller ck at location v.

Assume K, N and L are the numbers of controllers, switches and links,
respectively. In the first stage of algorithm LARC, to construct the auxiliary
graph G′ from the network G, we iteratively delete a link in G and calculate
the shortest path between all pairs of nodes, using Dijkstra’s algorithm, where
Dijkstra’s algorithm runs in time O(N2), and hence the calculation of the paths
of all pairs of nodes can be performed in O(N3) time. The construction of the
auxiliary graph construction takes O(L · N3) time.

The second stage of algorithm LARC places the controllers one by one. As
the shortest paths has been figured out already in the first stage, the localization
of a controller can be determined within O(N) time. Algorithm 1 performs pro-
cedures Remap and Relocate after placing a new controller. In the worst case,
procedure Remap has to change the mapping relationship between all the K con-
trollers and N switches. The worst case time complexity of procedure Remap is
O(KN). For all the placed controllers, procedure Relocate checks all potential
locations that can accommodate the controllers, and hence procedure Relocate
runs in time O(KN). Algorithm 1 thus takes O(K2N) time. Consequently, the
time complexity of algorithm LARC is O(L·N3)+O(K2N) = O(N3L+K2N) =
O(N3L) since N ≥ K.

4 Performance Evaluation

In this section, we evaluate the performance of the proposed controller place-
ment algorithm. We also investigate the impact of important parameters on the
performance of the proposed algorithm.

4.1 Simulation Setup

We evaluate the proposed algorithm LARC against the state-of-the-arts: SVVR
[10] and CPP [5], where algorithm SVVR maximizes the connectivity between
switches and controllers, by exploring the path diversity, while algorithm CPP
places the controllers in such a way that the average latency from the switches to
the controllers is minimized. The network topologies used in the simulation are
ATT (ATT North America) and Internet2 [5,14]. The capacities of controllers
and the request rates of switches are set as the same as those used by algorithm
SVVR. All controllers have identical computing capacity of 1800 kilorequests/s,
and each switch generates the requests with the rate of 200 kilorequests/s. We
use the geographical distance between two locations as an approximation of
latency [5].
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4.2 Performance Evaluation of the Proposed Algorithm

4.2.1 Weighting Impact of Backup Paths
We first evaluate the performance of different algorithms LARC, SVVR and CPP
by varying the latency weights of primary and backup paths λ1 and λ2(λ1+λ2 =
1) in Eq. (7), assuming that the number of controllers K is 5.
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Fig. 1. The average latency of backup paths under different weighting

Figure 1 shows the average latency of backup paths by varying the value of λ2

after single link failure. Algorithm LARC outperforms algorithm CPP by 24%
and 11% for two different networks ATT and Internet2, respectively. Algorithm
LARC places the controllers by jointly considering the latencies of both primary
and backup paths, while algorithm CPP deploys the controllers with the objec-
tive of optimizing the primary path latency only. Algorithm SVVR is the worst
one among the three mentioned algorithms. Algorithm SVVR aims to maximize
the number of disjoint paths between switches and controllers. However, the
latency is not considered in controller placements.

Figure 2 depicts the average latency of primary paths by varying the value
of λ2. Algorithm SVVR has the worst performance, as it focused on finding the
maximum number of disjoint paths between switches and controllers for com-
munication reliability without taking into account the communication latency.
Algorithm CPP performs better than algorithm LARC on different networks.
The average latency of primary paths delivered by algorithm LARC increases
from 0.3% to 14% for ATT, and from 0.1% to 17% for Internet2. In general,
when the weight λ2 is no greater than 0.3, algorithm LARC is only slightly
worse than CPP, as algorithm LARC considers the latencies of both primary
and backup paths, while algorithm CPP places controllers without any consid-
eration of backup path latency.

Figure 3 demonstrates the average accumulated latency of primary and
backup paths. The performance of algorithm SVVR is the worst, since it does
not consider the latency when deploying the controllers. Algorithm LARC out-
performs algorithm CPP by 9% on ATT and 4% on Internet2, respectively.
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Fig. 2. The average latency of primary paths by varying the latency weight of backup
paths
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Fig. 3. The average accumulated latency by varying the latency weight of backup paths

4.2.2 Impact of the Number of Controllers
We then study the impact of number of controllers on the performance of dif-
ferent algorithms, assuming the weight λ2 of backup path latency is set at 0.2.
Figure 4 plots the average latency curves of backup paths with different number
of controllers. Algorithm LARC outperforms both algorithms SVVR and CPP,
since algorithm LARC considers the latencies of both primary and backup paths
at the same time. Specifically, with 9 controller placements, algorithm LARC
outperforms algorithm CPP in terms of the average delay of backup paths by
27% on ATT and 10% on Internet2, respectively, and the performance improve-
ment diminishes with the growth of the number of controllers.

Figure 5 demonstrates the average latency of primary paths with different
number of controllers. Similar to the one shown in Fig. 2, algorithm CPP per-
forms slightly better than algorithm LARC, since algorithm CPP places the
controllers with the aim to minimize the latency of primary paths, while algo-
rithm LARC strives for the fine tradeoff of the delays between the primary and
backup paths. For both ATT and Internet2, the average latency of primary paths
delivered by algorithm CPP is 10% better than that of algorithm LARC, while
algorithm SVVR is the worst one.
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Fig. 4. The average latency of backup paths with different number of controllers
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Fig. 5. The average latency of primary paths with different number of controllers
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Fig. 6. The average accumulated latency with different number of controllers

Figure 6 illustrates the average accumulated latency by varying the number of
controllers. As shown in Fig. 3, algorithm LARC achieves the best performance
among the three algorithms, and algorithm LARC outperforms algorithm CPP
by 3% on ATT and 4% on Internet2, respectively. Figures 4 and 5 imply that the
decrease on the average latency of backup paths can compensate the increase on
the average latency of primary paths.
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5 Conclusions

Controller placements in Software-Defined Networking (SDN) are crucial in
the SDN performance. Most existing studies placed the controllers without
jointly considering the communication reliability and the communication latency
between controllers and switches if any link in the network fails. In this paper,
we introduced a novel latency metric that incorporates the communication delay
between the switches and the controllers due to a single link failure. We formu-
lated an SDN controller placement problem with the aim to minimize the aver-
age accumulated delay of primary and backup paths between all the switches
and their corresponding controllers due to a single link failure, and proposed
an efficient algorithm for the problem. We also conducted experiments through
simulations. Experimental results demonstrate that the proposed algorithm is
very promising.
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