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Abstract. The real-time camera-equipped mobile devices have been widely
researched recently. And cloud computing has been used to support those
applications. However, the high communication latency and unstable connec-
tions between cloud and users influence the Quality of Service (QoS). To
address the problem, we integrate fog computing and Software Defined Network
(SDN) to the current architecture. Fog computing pushes the computation and
storage resources to the network edge, which can efficiently reduce the latency
and enable mobility support. While SDN offers flexible centralized control and
global knowledge to the network. For applying the software defined cloud-fog
network (SDC-FN) architecture in the real-time mobile face recognition scenario
effectively, we propose leveraging the SDN centralized control and fireworks
algorithm (FWA) to solve the load balancing problem in the SDC-FN. The
simulation results demonstrate that the SDN-based FWA could decrease the
latency remarkably and improve the QoS in the SDC-FN architecture.
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1 Introduction

With the rapid popularization of mobile terminals, it is useful and convenient to detect
and recognize face on smart phones, tablets or laptops, which causes numerous novel
applications based on face recognition on mobile devices, such as pay-with-your-face,
photo tagging, face login and etc.

The face recognition applications on mobile devices require real-time response time
and mobility support. However, lots of face information needs to be processed during
the course of recognition. Thus, it is difficult for the resource constrained mobile
devices to process computationally intensive real-time recognition tasks. Offloading the
real-time face recognition tasks to the cloud computing platform is naturally regarded
as a competitive method to tackle such limitation.

In the cloud-based network architecture, cloud servers provide powerful compu-
tation and storage capacity for the face recognition applications. But there still remains
several challenges. It takes a relatively long time for users to send images to the cloud
since the cloud is far from end users. Furthermore, as more and more intelligent
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services are supported by cloud computing, the load of the cloud is heavier, which
leads to a poor robustness. Therefore, the cloud-based network architecture would not
satisfy the latency requirement of real-time face recognition well.

To overcome the above problem, in this paper we propose a novel software defined
cloud-fog network architecture which integrates fog computing and Software Defined
Network (SDN) to the cloud-based architecture. The employment of SDN can ease the
control of the network, increase network scalability and provide global knowledge to
the network [1]. To support the real-time mobile face recognition service, we introduce
fog computing. Fog is considered as a cloud close to the end users, which offers
computation and data resources at the network edge, and thus enables a new breed of
services that require low latency, mobility support and geo-distribution [2]. However,
the fog network usually consists of a large number of distributed resource-poor devices,
and a single fog device can’t efficiently process numerous tasks. Therefore, it’s nec-
essary to execute distributed computing in fog network.

Load balancing is one of the key technologies of the distributed computing.
Balancing the load according to an effective load balancing strategy can reduce the
response time remarkably. As the load on the cloud increases tremendously, lots of
works have been researched to balance the load of cloud computing [3, 4]. Although
fog is usually considered as a local cloud, the load balancing strategies of the cloud
computing can’t be applied to the fog network directly since the fog network is
heterogeneous and dynamic. Moreover, very few literatures concern about the load
balancing of task processing in the fog network. Most existing researches mainly focus
on the applications, resource allocation and energy management [5–7]. Therefore, we
investigate the efficient load balancing policy in the software defined cloud-fog net-
work (SDC-FN) to decrease the latency.

The main contributions of this paper are summarized as follows:

(1) We integrate fog computing and SDN to the cloud-based mobile face recognition
architecture to solve the latency problem.

(2) We formulate the load balancing in SDC-FN as an optimization problem.
(3) We propose applying fireworks algorithm (FWA) based on SDN centralized

control to solve the load balancing problem.

The rest of the paper is structured as follows. In Sect. 2, we introduce the SDC-FN
architecture; In Sect. 3, we formulate a theoretical model of the load balancing problem
in the SDC-FN and propose applying fireworks algorithm (FWA) based on SDN
centralized control to solve the load balancing problem; Our simulation results are
described in Sect. 4. Finally, we conclude our work in Sect. 5.

2 SDC-FN Architecture

When users use the face recognition applications, they take face photos with mobile
terminals, and then the applications send the photo information to the process-
ing center to perform the following steps: face detection, projection and a database
search for getting the recognition results. In SDC-FN, in order to decrease the response
time, we introduce fog network to perform the preprocess operations including face
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detection and projection. Meanwhile, SDN is necessary for its centralized control. The
overall architecture is shown in Fig. 1.

The architecture comprises of infrastructure layer, fog computing layer, control
layer, and cloud computing layer.

The infrastructure layer consists of mobile terminals and wireless Access Points
(Aps). Mobile terminals connect to the APs through one hop wireless link. APs are
located on the network edge, which can be deployed in high density. Meanwhile, APs
run the OpenFlow protocol, which are responsible for forwarding the received data.
And the forwarding rules are formulated by SDN controller.

The fog computing layer is composed of edge network devices (e.g., routers,
switches) whose computing and storage capability are limited. Fog devices are
OpenFlow-enabled, which not only interact with SDN controller, but also collaborate
with APs to forward data rapidly. Moreover, the face recognition task can be pre-
processed by fog devices, such as face detection and projection, thereby decrease the
communication latency and alleviate the burden on the cloud. Since the preprocessing
operations are computationally-intensive operations, it will lead to long latency that
numerous preprocessing tasks are handled by a single fog device. Therefore, it is
essential to execute distributed computing to balance the load.

The control layer includes SDN controller. OpenFlow-enabled SDN controller
controls the SDC-FN in a centralized way and it can collect the global knowledge of
the topology by interacting with fog devices and APs. Moreover, we run the load
balancing algorithm on the controller to develop an optimal load balancing strategy.

The cloud computing layer consists of cloud servers. Cloud servers utilize their
huge storage capacity to store a large quantity of facial information and set up a face
database. The facial feature information extracted by fog devices is delivered to the
cloud to match with the known faces in the database.

3 FWA-Based Load Balancing Algorithm in SDC-FN

3.1 Theoretical Model

We consider the fog network with k fog devices. The network topology is illustrated in
Fig. 2.

We can abstract the above topology as a weighted undirected graph G = (V,
E) with vertex set V and edge set E, as shown in Fig. 3.
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Fig. 1. SDC-FN architecture
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In Fig. 3, V ¼ v1; v2; � � � ; vk; S;Cf g, where vertex vi denotes the fog device, S and
C represent the SDN controller and the cloud respectively. We denote the computing
capacity of fog device vi as cvi, and the computing capacity of the cloud sever is cc. In
edge set E ¼ ev1v2 ; � � � ; evivj ; � � � ; evk�1vk ; ev3vc ; ev4vc

� �
, each edge represents a commu-

nication links between nodes, and the weight of each edge evi,vj, i.e., wvi,vj represents
the communication latency between nodes vi and vj. During the course of face
recognition, the recognition tasks, i.e., Task received by fog device vi can be divided
into many small subtasks Taski firstly, which satisfies the condition Taski = diTask,
where di is the portion of the subtask in the total task. Secondly, the subtasks are
allocated to appropriate fog devices to perform preprocessing operations. Finally, the
results of preprocessing Taskpre will be transmitted to the cloud for the final recognition
results and the results will be sent back to end users. Therefore, the total processing
time t of the task in SDC-FN can be expressed as:

t ¼ max
diTask
cvi

þwvi;vj mvi;vj

� �
þ Taskpre

cc
þwvi;c ð1Þ

where diTask/cvi denotes the computation time of the subtask Taski on fog device vi,
wvi,vj is the communication latency between fog devices vi and vj, mvi,vj denotes whether
there is a subtask allocation relationship between fog devices vi and vj. When mvi,vj = 1,
there exists the relationship; when mvi,vj = 0, the relationship doesn’t exist. The
Taskpre/cc part is the computation time of the task Taskpre on the cloud, and wvi,c

represents the communication latency between fog device vi and cloud.
For achieving the minimum task processing latency t, we must find a group of

optimal di.In summary, the problem can be formulated as:

min max
diTask
cvi

þwvi;vjmvi;vj

� �
þ Taskpre

cc
þwvi;c

� �
i; j ¼ 1; 2; � � � ; k: ð2Þ

v

vk

4 v3

v2
v1

Fig. 2. SDC-FN topology Fig. 3. The weighted undirected graph
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s:t:mvi;vj ¼
1; di 6¼ 0

0; di ¼ 0

(

Pk
i¼1

di ¼ 1

: ð3Þ

3.2 SDN-Based FWA Algorithm

In the model of the load balancing problem in Sect. 3.1, it is necessary to find a set of
optimal load distribution coefficients di to obtain the minimum latency. In SDC-FN, the
subtask processed on each fog device is Taski = diTask. Accordingly, the subtasks on
k fog devices form a k dimension vector TA ¼ ðTask1; Task2; . . .; TaskkÞT . Assuming
the tasks are received by fog device v1, from Eq. (1), the total latency t can be
expressed as:

tðTAÞ ¼ max
Task1
cv1

þwv1;v1mv1;v1 ; � � � ;
Taskk
cvk

þwv1;vkmv1;vk

� �
þ Taskpre

cc
þwv1;vcmv1;vc : ð4Þ

The resolution of di can be converted into the resolution of vector TA, which could be
formulated as the following optimization problem:

min tðTAÞf g;TA 2 I : ð5Þ

s:t: TAðiÞ� 0Pk
i¼1

TAðiÞ ¼ Task
: ð6Þ

And the solution space I is:

I ¼
Yk
i¼1

Taskimin; Taskimax½ � ¼
Yk
i¼1

0; Task½ � : ð7Þ

In this paper, we introduce fireworks algorithm (FWA) to solve the load balancing
problem, namely the above optimization problem. FWA is one of the latest swarm
intelligence optimization problem proposed by Tan and Zhu [8]. Although there has
been few works about the FWA’s implementation, the results show that it has exhibited
promising performance in dealing with various optimization problems [9, 10].

The steps of leveraging FWA to resolve the load balancing problem, i.e., Eq. (5),
are shown as follows:

(1) The fireworks TAif gNi¼1 should be randomly initialized in the solution space,
where N denotes the number of fireworks. The position of each firework is
TAi ¼ Task1ðiÞ; Task2ðiÞ; � � � ; TaskkðiÞð ÞT .
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(2) Computing the fitness value of each firework according to the optimization
objective function t(TA). The explosion amplitude Ai and the number Si of
explosion sparks for each fireworks TAi can be defined as: [8]

Ai ¼ A� t TAið Þ � tmin þ ePN
i¼1

t TAið Þ � tminð Þþ e

: ð8Þ

Si ¼ M � tmax � tðTAiÞþ ePN
i¼1

tmax � tðTAiÞð Þþ e

: ð9Þ

where A and M are two constants for controlling the maximum value of the
explosion amplitude and the number of explosion sparks, tmax = max(t(TAi)) and
tmin = min((t(TAi)) (i = 1,2,…,N) represent the maximum and minimum fitness
value in the current fireworks population respectively, and e is the machine
epsilon to avoid zero-division-error. In order to avoid the overwhelming effects of
the better fireworks, it’s necessary to limit the number of sparks Si: [8]

Ŝ1 ¼
roundða �MÞ; Si\aM
roundðb �MÞ; Si [ bM; a\ b\ 1
roundðSiÞ; otherwise

8<
: ð10Þ

where a, b are two constants.
(3) Generating explosion sparks according to the calculated number of the sparks Si

and the explosion amplitude Ai. When an explosion occurs, there exists a random
offset value in [−Ai, Ai], which is added to z dimensions randomly chosen from
TAi. The chosen z dimensions are calculated as: [8]

z ¼ roundðd � Uð0; 1ÞÞ ð11Þ

where d represents the dimension of TAi, U(0,1) is a random number uniformly
distributed between 0 and 1. Each dimension k 2 {1,2…,z} of the generated
explosion sparks TÂi can be expressed as: [8]

TÂik ¼ TAik þAi � Uð�1; 1Þ ð12Þ

where U(−1,1) is a random number uniformly distributed between −1 and 1
If TÂi is out of the bound of the solution space on the dimension k, it will be
mapped to a new location according to the equal: [8]

TÂik ¼ TALB;k þ TÂi

�� ��% TAUB;k � TALB;k
	 
 ð13Þ

where TAUB,k and TALB,k denote the upper and lower boundary of the solution
space on the dimension k, respectively.
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(4) Generating Gaussian mutation sparks to maintain the diversity of sparks. FWA
randomly selects Mg fireworks in the fireworks population and chooses z dimen-
sions randomly according to Eq. (11) in each firework of these Mg fireworks to
perform Gaussian mutation. (Mg is a constant to control the number of Gaussian
sparks). Each dimension k 2 {1,2…,z} of the generated Gaussian sparks TÂi can
be calculated as: [8]

TÂik ¼ TAik � N 1; 1ð Þ: ð14Þ

where N(1,1) represents the Gauss distribution with mean 1, variance 1. Similarly,
if TÂi is out of the bound of the solution space on the dimension k, it will be
mapped to a new location according to Eq. (13).

5) Selecting N individuals as a new fireworks population from the current generation
of fireworks, explosion sparks and Gaussian sparks to enter into the next gener-
ation. The individual with minimum fitness value is deterministically transmitted
to the next generation. In order to maintain the diversity, the remaining N−1
individuals are selected based on Roulette Wheel Selection. For individual TAi,
the selection probability P(TAi) is calculated as: [8]

P TAið Þ ¼ R TAið ÞP
TAj2K

TAj
ð15Þ

R TAið Þ ¼
X
TAj2K

d TAi � TAj
	 
 ¼ X

TAj2K
TAi � TAj

�� �� ð16Þ

where K is the set of all current individuals including both fireworks and sparks,
R (TAi) is the distance between individual TAi and other individuals.

(6) Repeating step 2–5 until the end termination condition is reached.
In the above analysis of the FWA-based load balancing strategy, SDN controller
collects the information of all nodes, formulates an optimal load balancing
strategy by running the FWA and sends flow tables including the strategy to fog
devices.

4 Simulation Results

We consider the scenario with 10 fog devices. In the real network circumstance, the
communication latency wvi,vj between the nodes mainly includes uplink transmission
latency, downlink transmission latency and other latency. Other latency includes
propagation latency and queuing latency. Some important parameters of SDC-FN and
FWA in the simulation are summarized in Tables 1 and 2 respectively, referring to
[9, 11]. The task loads in the experiment are simulation setting.All the simulating results
are obtained by MATLAB and they are the means of many repeated experiments.
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4.1 Latency Performance Comparison Between the Cloud-Based
Architecture and SDC-FN

In the simulation, we compare the SDC-FN based on FWA load balancing algorithm
with the cloud-based architecture to evaluate the latency performance of the SDC-FN.

The comparison result is shown in Fig. 4. When the workload is lower than
1 Gb, the recognition task processing latency in SDC-FN is lower than in the
cloud-based architecture, but their latency values have little difference. This is
because in the cloud-based architecture, the computing capacity of the cloud severs is
more powerful, and transmitting a small amount of tasks to the cloud will not
generate high communication latency. However, with the increase of task, the latency

Table 1. The related parameters of SDC-FN

Parameter SDC-FN devices
Type C v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
cc/cvi (Gbps) 10 1 2 3 0.4 0.5 0.6 0.6 0.7 0.5 1
Uplink bandwith (Mbps) 2 84 86 71 80 83 90 86 89 87 79
Downlink bandwith (Mbps) 1.8 99 100 98 101 96 104 99 105 102 97
Other latency (ms) 10 1 1 1.2 1.1 1.2 1 1.3 1 1.3 1

Table 2. The related parameters of FWA algorithm

Parameters Values

Number of fireworks N 20
Maximum value of the explosion amplitude A 30
Number of sparks M 64
Constant parameter a 0.04
Constant parameter b 0.8
Number of Gaussian sparks Mg 20
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Fig. 4. Latency performance comparison between the cloud-based architecture and SDC-FN
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in the cloud-based architecture is dramatically higher than that in SDC-FN because of
the increasing transmission latency. Compared with the cloud-based architecture, the
reason why SDC-FN shows good latency performance is that the cloud is far from
the users and there is limited bandwidth while the fog is proximity to end users and
the communication bandwidth is higher. Therefore, the SDC-FN architecture can
efficiently reduce the latency to improve the QoS.

4.2 Latency Performance Comparison of Multiple Load Balancing
Algorithms

To validate the high efficiency of the FWA-based load balancing algorithm in reducing
latency in SDC-FN, we compare it with the PSO-CO [12], Weighted Round Robin
(WRR) [13] and Pick-KX load balancing algorithm [14].

Figure 5 shows the simulation results of four load balancing algorithms in
SDC-FN. With the increase of the task quantity, the FWA-based algorithm obtained
lower latency than other three algorithms. On one hand, in FWA, the fireworks with
low fitness generate more sparks in a small range, which has a strong local search
capability for the location of the fireworks. Conversely, the high fitness fireworks create
less sparks in a large scale, which has a certain global search capability. Thus, the
FWA-based algorithm can achieve a better global load balancing strategy. On the other
hand, the WRR and Pick-KX algorithm don’t consider the communication latency
when balancing the load, and the PSO-CO may fall into the local optimum, thereby
they can’t formulate a good load balancing strategy to reduce latency. When the task
quantity is 20 Gb, the delay performance of FWA-based algorithm improved by
66.7%, 58.3%, 13.1% compared with WRR, Pick-KX and PSO-CO, respectively.
Accordingly, applying the FWA-based load balancing algorithm in SDC-FN can
reduce the task processing latency efficiently of the real-time mobile face recognition.

4.3 Influence of the Uplink Bandwidth for the Latency of SDC-FN

Since the bandwidth has a great impact on the transmission latency and can affect the
total task processing time, we are motivated to investigate the influence of the band-
width on the latency performance in SDC-FN in this section. We vary the uplink
bandwidth of the cloud from 2 to 30 Mbps to evaluate how it affects the latency in
SDC-FN by comparing it with the cloud-based architecture, and the task quantity is
fixed to 20 Gb.The result is shown in Fig. 6. The figure illustrates that, the latency of
cloud-based architecture decreases dramatically with the increase of the up-link
bandwidth, but it stays steady when the up-link bandwidth is higher than 10 Mbps.
While there are relatively little latency reduction in SDC-FN. Since in SDC-FN, a small
amount of facial feature information after preprocessing is transmitted to the cloud,
thus, the transmission latency would not decrease significantly when the uplink
bandwidth of the cloud increases. And the latency in SDC-FN always keeps a low
level, which indicates SDC-FN is more appropriate for real-time face recognition.
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5 Conclusions

In this paper, we have introduced a novel network architecture which integrates fog
computing and SDN to the cloud-based architecture in the real-time mobile face
recognition to decrease the latency of the recognition service. Then, we set up a
theoretical model of the load balancing problem in the software defined cloud-fog
network (SDC-FN). On this basis, we proposed a SDN-based FWA centralized load
balancing algorithm to balance the load for reducing latency efficiently. Simulation
results reveal that: (1) The algorithm has good performance in reducing latency.
(2) Applying the SDC-FN architecture in the real-time mobile face recognition scenario
can meet the users’ requirement of fast response time and improve the QoS. Our focus
of the next step is to improve the performance of the FWA-based load balancing
algorithm in the SDC-FN and implement the algorithm in the real SDC-FN platform.
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