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Abstract. We develop the joint optimal channel selection and power
control scheme for video streaming with D2D communications in cogni-
tive radio networks. In particular, we build the virtual queue model to
evaluate the delays experienced by various streaming, which reflects the
video distortion. To minimize the video distortion, we formulate an opti-
mization problem, which is proved to be a quasi-convex optimization
problem. Using the hypo-graph form, we convert the original problem
into an equivalent convex optimization problem, solving which we can
derive the joint channel selection and power control scheme in D2D com-
munications based cognitive radio networks. The extensive simulation
results obtained validate our developed joint channel selection and power
control scheme. We also show that our developed scheme can significantly
increase the average peak signal-to-noise ratio (PSNR) as compared with
the existing research works.

Keywords: Cognitive radio networks · D2D communication · Channel
selection · Power control · Video distortion · Convex optimization

1 Introduction

The evolving fifth generation (5G) wireless networks are envisioned to pro-
vide higher data rates, reduce end-to-end delay, improve the quality of expe-
rience (QoE) of mobile users, and mitigate the interference. This motivates the
innovation of new communication paradigms. Cognitive radio networks, allow-
ing secondary users (SUs) to spectrum share or time share the idle licensed
spectrum with primary users (PUs), can efficiently increase the spectrum effi-
ciency in frequency-domain and time-domain [1]. D2D communications, which
enable data exchange directly between two mobile users (called D2D pair) in
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proximity bypassing base station (BS) or core network, can increase the spec-
trum efficiency in space-domain [2]. As a result, employing D2D communications
in cognitive radio networks can significantly increase the spectrum efficiency
in frequency/time/space-domain. Therefore, cognitive radio network coexisting
with D2D communications, as a promising, but challenging, technical approach,
has been paid much research attention.

The authors of [3] analyzed the engineering insights useful for system design
in the D2D communications with cognitive radio assistance. The authors of [4]
proposed a cognitive spectrum access in D2D-enabled cellular networks. Most of
these works concentrate on how to improve the network performance by employ-
ing D2D communication in cognitive radio networks. However, for realtime video
streams, the delay-sensitive traffic imposes new challenges for D2D communica-
tions based cognitive radio networks. To guarantee realtime transmission for
delay-sensitive traffic, it is necessary to take the video distortion into account
for D2D communications based cognitive radio networks.

To remedy the above deficiencies, in this paper we propose the joint opti-
mal channel selection and power control scheme for video streaming over D2D
communications based cognitive radio networks. Applying the “M/G/1 queues
with vacations” theory, we build the virtual queue model to evaluate the delays
experienced by various streaming. Then, we formulate the distortion minimiza-
tion problem subject to the required capacity constraints and power constraints,
which is proved to be a quasi-convex problem. Adopting the hypo-graph form,
we convert the original problem into an equivalent convex problem. We develop
the Lagrange-dual method to derive the joint optimal channel selection and
power control scheme. The extensive simulation results obtained validate our
proposed joint channel selection and power control scheme and show the better
performance than the existing research works.

The rest of this paper is organized as follows. Section 2 shows the system
model for the considered D2D communications based cognitive radio networks.
Section 3 formulates the video distortion minimization, converts the original opti-
mization problem into a strict convex optimization problem and solves the prob-
lem by developing primal-dual method. Section 4 simulates and evaluates our
proposed channel selection and power allocation scheme. The paper concludes
with Sect. 5.

2 The System Model

2.1 Network Model

We consider the D2D communications based cognitive radio network model as
shown in Fig. 1, which consists of a number of important components described
as follows. PUs, the traditional cognitive primary nodes, communicate with other
terminals through the BS. SUs implement D2D communications with each other,
forming D2D pairs. Both PUs and SUs share the same bandwidth B which is
licenced to PUs. There are M channels in the cognitive radio networks. The PUs
can only occupy their assigned channels. From the perspective of SUs, there is
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Fig. 1. The network model.

no need to differentiate different PUs on one channel. Therefore, we reduce the
PUs on one channel into one aggregate PU. As a result, there are two sets of
users on each channel: one aggregate PU and several SUs.

As transmitters, SUs take their actions of channel selection and power alloca-
tion for each packet. We denote the channel selection strategy of SUi, (1 ≤ i ≤ N)
as αi = [αi1, αi2, . . . , αiM ], where αij ∈ [0, 1] represents the probability of SUi

to choose channel j for transmission. Hence, we have
∑M

j=1 αij = 1.
Let Pi = [Pi1, Pi2, . . . , PiM ] denote by the power allocation of SUi on each

channel j (1 ≤ j ≤ M). Due to D2D nodes’ power-consumption constraints [2],
each secondary user needs to satisfy an individual power constraint

∑M
j=1 Pij ≤

Pmax
i , where Pmax

i is the maximum power constraint for SUi.

2.2 Channel Model

Let xi denote by the stream bit rate of SUi, and Cij denote by the “capacity”.
According to the channel selection strategy, the stream bit rate of SUi over
channel j is αijxi. Clearly, for each channel j, the stream bit rate of SUi cannot
exceed the channel capacity

αijxi ≤ Cij . (1)

The interference-limited network model is adopted. Hence, the channel capacity
of channel j selected by SUi can be written as the global and nonlinear functions
of the transmit power P and channel conditions, which is given as follows:

C(P ) = B log2 [1 + K · SINR(P )] . (2)

Here, the parameter K = (−1.5/ ln BER), where BER represents the required
bit-error rate. The signal-to-interference-plus-noise ratio (SINR) from SUi to the
receiving node using channel j can be expressed as follows:
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SINRij =
GjjPij∑

k �=j

∑

h�=i

GkjPhk + nj
, (3)

where Gkj is the path gain from the transmitter on channel k to the receiver on
channel j and nj represents the additive Gaussian noise power (for the receiver
of channel j). With proper spreading gain, Gjj is much larger than Gjk, k �= j.
Hence, K ·SINR is much larger than 1. In this high SINR regime, the attainable
rate of SUi on channel j can be closely approximate to C � B log2(K ·SINR) [5].

2.3 Virtual Queue Model

The packet arrival process is modeled as a Poisson process with average packet
arrival rate λPU

j and λij respectively for the PU and SUi on channel j. Note that
the aggregation of Poisson processes in the same channel is still Poisson. The
packets of the competing users are physically waiting in their buffer locally. For
each channel j, Fig. 2 depicts N physical queues Qij for SUi with the arrival rate
λij , a physical queue for PUj with the arrival rate λPU

j , and a virtual queue Q̃j

of channel j with the arrival rate of
∑N

k=1 λkj + λPU
j . Since αijxi represents the

stream bit rate of SUi over channel j, the arrival rate of SUi can be determined
by λij = αijxi/Li, where Li is the average packet length of SUi. The ARQ
protocol is considered to decrease packet errors. The service time of the physical
queue users can be modeled as a geometric distribution. We adopt the M/G/1
model for the traffic description of physical queues. Based on the well-known
P-K formula [6], the first and second moments of the service time of SUi using
channel j can be derived as follows:

⎧
⎨

⎩

E[Xij ] = Li

Cij(1−P err
ij ) ;

E[X2
ij ] = L2

i (1+P err
ij )

C2
ij(1−P err

ij )2
,

(4)

where P err
ij is the packet error rate of SUi over channel j.

Fig. 2. The queuing process and the virtual queue.
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For channel j, one SU can be allowed to transmit data on it at the same
time. All the packets from different SUs on channel j form the virtual queue
Q̃j , as shown in Fig. 2. Given that the service time of SUs E[Xij ] are identically
distributed (i.i.d), the virtual queue Q̃j is modeled as “M/G/1 queues with
Vacations [7]”. From the perspective of SUi, at the end of its service time, the
transmitter goes on a “vacation”. In this “vacation” time, another user can send
its traffic. In physical queues, we assume that a packet will join into the virtual
queue once it arrives. Hence, the total delay is the service time in physical queue.
Note that the total delay in physical queue becomes the service time in virtual
queue. The service time in virtual queue is thus the service time in physical
queue. Consequently, the end-to-end delay in virtual queue is the service time
in physical queue plus the waiting time in virtual queue. The expectation of the
vacation time E[Vij ], waiting time E[Wij ], and end-to-end delay E[Dij ] of SUi

using channel j can be derived as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E[Vij ] =
N∑

k=1,k �=i

E[X2
kj ]

2E[Xkj ]
+ E[XPU

j
2
]

2E[XPU
j ]

;

E[Wij ] = λijE[X
2
ij ]

2(1−λijE[Xij ])
+ E[Vij ];

E[Dij ] = E[Xij ] + E[Wij ].

(5)

Let P loss
ij represent the probability of packet loss for SUi sending packets

through channel j. For video streaming, P loss
ij can be determined by the prob-

ability that the video session violated its play-out deadline d0, i.e., P loss
ij =

Pr(E[Dij ] > d0). Based on the work of [8], we have:

Pr(E[Dij ] > d0) = ρij exp
(

− ρijd0
E[Dij ]

)

, ρij < 1, (6)

where ρij represents the normalized loading of SUi using channel j, which is
confirmed as ρij = λijE[Xij ]. Since the normalized loading ρij < 1 leads to
a bounded delay E[Dij ] [6], which is expected for the video streaming, we can
obtain:

αijxi < Cij(1 − P err
ij ), (7)

where Cij(1 − P err
ij ) can be regarded as the achievable capacity under ρij < 1.

By contrast, Eq. (1) is a more relaxed constraint. Hence, we use Eq. (7) as the
rate constraint.

2.4 Video Distortion Model

As a measurement of wireless video quality, an additive model to capture video
distortion is used [9]. The overall Mean-Squared-Error (MSE) distortion consists
of two types of distortions: the distortion caused by signal compression Dcom and
the distortion caused by transmission errors Derr. We can calculate the overall
MSE as follows:

Dall = Dcom + Derr. (8)
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The distortion Dcom is determined by the compressed method, which can be
approximated by:

Dcom =
θ

R − R0
+ D0, (9)

where R is the video stream bit rate, which is equivalent to αijxi. The parameters
θ, R0 and D0 depend on the encoded sequence as well as the encoded structure.
Note that θ,R0 and D0 can be estimated by nonlinear regression. Hence, they
are assumed constants in this paper. Likewise, Derr can be modeled by a linear
function with respect to packet error rate P err and probability of packet loss
P loss as follows:

Derr = σ[P err + (1 − P err)P loss], (10)

where σ is a constant.

3 Video Distortion Minimization

To minimize the total distortion of SUs, in this section we first formulate
the video distortion minimization problem. Then, we develop the primal-dual
method to solve the video distortion minimization problem.

3.1 Problem Formulation

Let α = [α1,α2, . . . ,αN ]T and P = [P1,P2, . . . ,PN ]T denote by the total
channel selection and power control strategies across all the SUs. The video
distortion minimization problem can be formulated as follows:

P1 : min
(α,P )

N∑

i=1

M∑

j=1

αT Dall (11)

subject to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αijxi < Cij(1 − P err
ij ),∀i, j; (12)

M∑

j=1

αij = 1, αij ∈ [0, 1],∀i; (13)

M∑

j=1

Pij ≤ Pmax
i , Pij ≥ 0,∀i; (14)

C(P ) = B log2 [1 + K · SINR(P )] ,∀i, j. (15)

The objective function in Eq. (11) is set to minimize the total weighted video
distortion for all SUs. The weight is channel selection probability α. The decision
variables are α and P . The constraint Eq. (12) makes sure that the stream bit
rate for SUi using channel j cannot exceed the achievable capacity of channel j.
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The constraints Eqs. (13) and (14) ensure the feasibility of channel selection and
power control. The constraint Eq. (15) indicates the calculation of the capacity
of channel j.

It is clear the constraints Eqs. (12)–(14) are convex functions. Because the
K · SINR is much larger than 1, the constraint Eq. (15) can be approximated to
C(P ) = B log2 [K · SINR(P )], which can be further converted into a nonlinear
concave function through a log transformation, leading to a critical convexity
property [5]. Next, we prove the convexity of the objective function Eq. (11).
We first rewrite the objective function Eq. (11) as follows:

min
(α,P )

N∑

i=1

M∑

j=1

αij(D0 + σP err
ij ) +

θαij

αijxi − R0
+ σ(1 − P err

ij )αijρij exp
(

− ρijd0
E[Dij ]

)

.

Theorem 1. The objective function of this Video Distortion Minimization prob-
lem is a quasi-convex problem.

Proof. It is easy to prove that the first term αij(D0 + σP err
ij ), the second term

θαij

αijxi−R0
and the multiplication αijρij = α2

ijxi

Cij(1−P err
ij ) of the third term in the

objective function are all convex. We denote f = ρijd0 = αijxid0
Cij(1−P err

ij ) , checking
its Hessian matrix, we can obtain:

∂2f

∂α2
ij

· ∂2f

∂P 2
ij

−
[

∂2f

∂αijPij

]2

= −
[

xid0B

C2
ijPij(1 − P err

ij ) ln 2

]2

≤ 0. (16)

Therefore, the numerator of the exponent is concave. For the denominator of the
exponent E[Dij ], the first derivative with respect to Cij and the Hessian matrix
are shown as follows:

∂E[Dij ]
∂Cij

=
−Li

[
α2

ijx
2
i + 2Cij(1 − P err

ij )(Cij − αijxi)
]

2C2
ij [Cij(1 − P err

ij ) − αijxi]2
≤ 0, (17)

∂2
E[Dij ]
∂α2

ij

· ∂2
E[Dij ]
∂C2

ij

−
[
∂2

E[Dij ]
∂αij∂Cij

]2

=
L2

i x
2
i (1 + P err

ij )
C3

ij

≥ 0. (18)

The Hessian matrix of E[Dij ] is semipositive. Hence E[Dij ] is convex with respect
to αij and Cij . Note that E[Dij ] is nonincreasing of Cij . Meanwhile, Cij is concave.
As a result, E[Dij ] is convex with respect to αij and Pij . Since the numerator
ρijd0 is concave, and the denominator E[Dij ] is convex, the function exp(− ρijd0

E[Dij ]
)

is quasi-convex. Consequently, the objective function is quasi-convex. �

In the objective function, the first term, second term and the multiplication
of the third term are all convex. To make the primal objective function strictly
convex, we just need to make the exponent part convex. For this reason, auxiliary
variable t is introduced. We apply the hypo-graph form to replace the quasi-
convex function as follows:
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tE[Dij ] − ρij ≤ 0, t ≥ 0. (19)

The Eq. (19) is strictly convex. Consequently, the optimization problem P1 can
be equivalently converted to the optimization problem P2 as follows:

P2 : min
(α,P ,t)

N∑

i=1

M∑

j=1

αij(D0 + σP err
ij ) +

θαij

αijxi − R0
+ σ(1 − P err

ij )αijρij exp(−d0t)

subject to the constraints Eqs. (12)–(15) and (19).
It is clear that P2 is a strict convex optimization problem because the objec-

tive function and the constraints are all convex.

3.2 Lagrange-Dual Method

We utilize the Lagrange-dual method to develop a solution algorithm for the
video distortion minimization problem. We first define the Lagrangian function
for the video distortion minimization problem P2 in Eq. (20), where κ1, κ2, and
κ3 are the Lagrange multipliers associated with the problem’s constraints.

L =
N∑

i=1

M∑

j=1

[

αij(D0 + σP err
ij ) + θαij

αijxi−R0
+ σ(1 − P err

ij )αijρij exp(−d0t)
]

+
M∑

j=1

κ1

(
αijxi − Cij(1 − P err

ij )
)

+
N∑

i=1

κ2

(
M∑

j=1

Pij − Pmax
i

)

+
N∑

i=1

M∑

j=1

κ3 (tE[Dij ] − ρij). (20)

Since the optimization problem P2 is strictly convex, the duality gap is zero.
We use gradient projection method to solve the Lagrange problem. In order
to expand the Lagrange function, we replace ρij and E[Dij ] in L with their
expressions in Sect. 2. As the Lagrange function is differentiable, the gradients
of L with respect to the Lagrange multipliers are obtained as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂L
∂κ1

= αijxi − Cij(1 − P err
ij );

∂L
∂κ2

=
M∑

j=1

Pij − Pmax
i ;

∂L
∂κ3

=
N∑

i=1

M∑

j=1

[
t( Li(2Cij−αijxi)

2Cij [Cij(1−P err
ij )−αijxi]

+ E[Vij ]) − αijxi

Cij(1−P err
ij )

]
.

(21)

By applying the gradient projection method, the Lagrange multipliers are cal-
culated iteratively as follows:

κ1(s + 1) =
[

κ1(s) + ν
∂L

∂κ1

]+

, (22)
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where ν > 0 is the gradient step size, s represents the gradient numbers, and [·]+
denotes max(0, ·). The remaining Lagrange multipliers κ2 and κ3 are obtained
iteratively using similar equations.

Taking the derivation of L with respect to αij , Pij and t, setting the results to
zero, respectively, we can obtain Eq. (23), where αij and Pij can be numerically
solved in the next section.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂αij

=
N∑

i=1

M∑

j=1

{
D0 + σP err

ij − θR0
(αijxi−R0)2

+ 2αijxi exp(−d0t)
Cij(1−P err

ij ) + κ1xi − κ3xi

Cij(1−P err
ij )

+ κ3txiLi(1+P err
ij )

2[Cij(1−P err
ij )−αijxi]2

}
= 0,

∂L
∂Pij

=
N∑

i=1

M∑

j=1

B
Pij ln 2

{
−σα2

ijxi

C
2
ij

exp(−d0t) − κ1(1 − P err
ij ) + κ3αijxi

C
2
ij(1−P err

ij )

+κ3tLi
2Cij(1−P err

ij )αijxi−2C2
ij(1−P err

ij )−α2
ijx2

i

2C2
ij [Cij(1−P err

ij )−αijxi]2

}
+ κ2 = 0,

t∗ = − 1
d0

log
{

κ3
d0σxiα2

ij

[
Li(2Cij−αijxi)

2[Cij(1−P err
ij )−αijxi]

+ E[Vij ]Cij

]}
.

(23)

4 Numerical Results

In this section, we evaluate the performance of our proposed joint optimal chan-
nel selection and power allocation scheme. We set the bandwidth B = 10 MHz,
the packet length Li = 1 Kbits, delay deadline d0 = 0.5 s, the transmit power
constraint Pmax

i = 0.1 W, the bit-error-rate BER = 10−3, the noise power
nj = −104 dB, and the parameters for distortion model D0 = 0.38, θ = 2.53 kbps
and R0 = 18.3 kbps, respectively. The path gain Gkj is determined by the rel-
ative physical distance dkj from the transmitter of channel k to the receiver of
the channel j, i.e., Gkj = d−β

kj , where β is the path loss. In our simulation, we
set djj = 10 m, djk = 100 m (j �= k) and β = 4.

First, we simulate the network with two SUs (a D2D pair) and three channels
(i.e., N = 2 and M = 3), to show the results using simple network such that our
model can be clearly understood. The initial channel selection and power control
are set to be αij = 1/3 and Pij = 30 mW (1 ≤ i ≤ 2 and 1 ≤ j ≤ 3), respectively.
The packet error rate for SUs across all the channels are P err

11 = 0.11, P err
12 = 0.08,

P err
13 = 0.15, P err

21 = 0.05, P err
22 = 0.12 and P err

23 = 0.01. We set the required stream
bit rates of SUi x1 = 840 kbps and x2 = 960 kbps, respectively. The normalized
loadings of PUj are set to be ρ1 = 0.25, ρ2 = 0.35 and ρ3 = 0.15 respectively,
and the second moment normalized loadings are set to be ρ2j = 1 × 10−4.

Figures 3 and 4 depict the optimal channel selection and power allocation
scheme for SU1 and SU2 across all the channels. As shown in Figs. 3 and 4,
the probability for SU1 choosing channel 2 is α12 = 0.83, which is bigger than
choosing the other channels. The probability for SU2 choosing channel 2 is α22 =
0.07, which is smaller than choosing the other channels. Meanwhile, the power
allocation of SU1 for channel 2 is P12 = 53.63 mW, which is bigger than the
other channels. The power allocation of SU2 for channel 2 is P22 = 4.98 mW,
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Fig. 3. Optimal channel selection. Fig. 4. Optimal power allocation.

Fig. 5. Video distortion versus itera-
tions.

Fig. 6. Comparison with DLA.

which is smaller than the other channels. This is due to the reason that channel
capacity is limited, thus channels with smaller packet error rate and lighter
traffic loadings are assigned more data traffic and transmit power. Figure 5 plots
the overall video distortion of all the applications. The overall video distortion
(MSE) converges to 3.80, which is equivalent to the peak signal-to-noise ratio of
42.33 dB. As compared with DLA algorithm in [10] whose utility function cannot
converge to a steady state, our algorithm can achieve a better performance.

Next, we consider the network with six SUs and ten channels. We set the
bandwidth B = 1 MHz and simulate 100 times with different channel states (i.e.
packet error rate) as well as the normalized loadings and calculate the average
PSNR for the traffics from six SUs. We compare our proposed scheme with DLA
algorithm. The comparison results depicted in Fig. 6 show that our joint scheme
can achieve a better performance than the DLA algorithm.

5 Conclusion

In this paper, we studied the video distortion minimization problem in D2D
communications based cognitive radio network by jointly optimize the channel
selection and power control scheme.We first evaluated the delays experienced
by various streaming. Then, we formulated the video distortion minimization
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problem. Using the hypo-graph form, we equivalently converted the original
quasi-convex problem into a strict convex optimization problem, solving which,
we derived the joint channel selection and power control scheme. The extensive
simulation results obtained showed the better performance than the existing
research works.
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