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Abstract. Considering both system energy efficiency (EE) and the
implementation of distributed power control algorithm in multi-user cog-
nitive radio networks (CRNs), a multi-leader Stackelberg power control
game algorithm is proposed to achieve continuous Pareto improvements
in non-cooperative power control game (NPG) in this paper. By combin-
ing the advantages of cooperative and non-cooperative games with con-
sideration of secondary users’ quality of service (QoS) requirements, the
problems of low system EE of non-cooperative game and limited Pareto
improvement of single leader Stackelberg game are solved. Simple utility
function and time back-off are utilized to facilitate the implementation
of distributed algorithm. Simulations show that the proposed algorithm
improves the system EE as Pareto improvement is reached. Meanwhile,
primary user’s QoS is guaranteed as secondary users transmit with lower
power.

Keywords: Energy efficiency · Cognitive radio networks · Stackelberg
game theory · Pareto improvement

1 Introduction

With the increasing energy consumption in wireless networks, green wireless
communications arouse great attention, which aim at improving energy effi-
ciency (EE). Power control [1] is an efficient radio management method to reduce
mutual interference and improve the EE.

Power control schemes based on game theory are investigated. In [2], a non-
cooperative power control game (NPG) was investigated to solve the power con-
trol issues in multi-secondary-user underlay cognitive radio networks (CRNs).
The utility function was designed based on EE, which was easy to realize distrib-
uted computation and reduced the power consumption of the base stations [2].
In [3], the authors modified the utility function designed in [2] with a novel pric-
ing function to pursue higher EE. However, Nash equilibrium (NE) in the non-
cooperative game is inefficient since the users act selfishly [4]. In [5], hierarchy-
based cooperative Stackelberg game was introduced to deal with the inefficient
NE problem. In [6], Stackelberg game was used to pursue high EE for single
user while total EE of multiple secondary users (SUs) was ignored. In [7], the
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authors focused on maximizing multiple SUs’ total EE with Stackelberg game.
However, only one-shot Pareto improvement was obtained in [7]. Thus, the EE
can be further improved by continuous Pareto improvements.

In this paper, we focus on achieving high total EE of multiple users by con-
tinuous Pareto improvements in underlay CRNs. We proposed a distributed
power control algorithm based on Stackelberg game to improve EE. In the pro-
posed algorithm, the utility function is simply defined based on EE and time
back-off [8] is used to implement the distributed algorithm. Continuous Pareto
improvements are achieved with multiple leaders implementing power-decreasing
strategy. Thus, high total EE of multiple users is achieved in the green com-
munications. We also prove the existence of Stackelberg Equilibrium (SE) and
investigate the computational complexity of the proposed algorithm.

2 System Model and Problem Formulation

In underlay CRNs, N pairs of SUs simultaneously share the same band with a
pair of primary users (PUs). To make the figure simple and clear, in Fig. 1, only
three pairs of SU transceivers (SU-TXi and SU-RXi, i = {1, 2, 3} and a pair of
PU transceiver (PU-T and PU-R) are shown and the interference links between
SUs are not shown. Log-normal channel model is considered. The channel gains
of links SUs−PU and secondary transmitter (ST) j−secondary receiver (SR) j
are denoted by gj and hj , respectively. hij denotes channel gain between ST i
and SR j. Local knowledge between two direct links about channel information
can be acquired by each SU. In underlay CRNs, three constraints should be
satisfied. First, the interference to PUs caused by SUs should not exceed the
interference threshold I th. Second, the maximum power budget of SU j, e.g. pj ,
is pmax

j . Last, each pair of SUs (e.g. the j th) needs to meet a target signal-
to-noise plus interference ratio (SINR) γtar

j to guarantee the quality of service
(QoS). In this paper, we aim to maximize the total EE of the system. For each
SU, the utility uj is defined as [2,3,5]

Fig. 1. System model
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uj (pj , P−j) =
LR

Mpj
fj(γj), (1)

where R, M and L represent transmit rate, data length and information length
of each packet, respectively. P−j is a set {p1, . . . , pj−1, pj+1, . . . , pN}. fj(γj) is a
monotonic deceasing function to measure the probability of correct reception:

fj(γj) = (1 − 2Pej)
M

. (2)

Here, Pej = 0.5 exp(−γj

2 ), which represents the binary error rate of a noncoherent
frequency shift keying modem. The utility function can be interpreted as the
number of information bits received per Joule of energy expended.

The optimization problem in this paper is written as:

max w =
∑

j∈N

uj

s.t.
∑

j∈N

pj |gj |2 ≤ Ith,

pj ∈ (0, pj
max],

γj =
pj |hj |2

N∑
i=1, i �=j

pi|hij |2 + δ2j

≥ γj
tar.

(3)

Here, w is social welfare [5] as defined in [7]. δ2j contains the interference to SU
j caused by primary transmitter and additive white Gaussian noise.

3 Review of NPG and Stackelberg Game

3.1 NPG Algorithm and NE

An appropriate model for power control problem is given by NPG [4]. In [4], the
optimization problem is written as

max uj(pj , P−j), j ∈ {1, . . . , N}. (4)

We denote the utility function alternatively as uj(pj ,P−j), where uj is the same
as (1) and P−j represents the power of players excluding j.pj represents the
power of user j. Non-cooperative game is described as G = [N, {pj} , {uj}],
where N = {1, . . . , N} is the SU player set. {pj} is the policy set and {uj} is
the utility function set.

The works [4,9] on NPG algorithm show that the unique NE exists when
users choose their policies selfishly and rationally. The NE can be described as
pNE = (pNE

1 , . . . , pNE
N ), where pNE

j = min(pmax
j , p∼

j ) and p∼
j is

p∼
j =

γ∼
j

(
∑
k �=j

hkjpk
NE + δ2j

)

hj
, (5)
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which represents the transmit power of SU j. The γ∼
j is the SINR, which is the

solution to (6)

f ′(γj)γj − f(γj) = 0. (6)

At the NE, the corresponding SINR of p∼
j depends on the function fj(γj) in

(2). γ∼
j is defined as ‘the best SINR at the NE’ and each SU transmits with the

corresponding power of the best SINR. NPG algorithm provides a solution for
power control when NE is achieved. However, the NE is inefficient from the sense
of two perspectives: (1) if some users continue to decrease power to break the
NE, the utility of each user will increase; (2) the SUs selfishly maximize their
own utilities without considering the interference to PU and other SUs.

3.2 The Single-Leader Stackelberg Game for Power Control

Stackelberg game for power control is introduced to deal with the inefficient NE
in NPG. In the game, one user is the leader while the other users are followers.
If the leader chooses the power to maximize its utility, an equilibrium will be
achieved among users, namely Stackelberg Equilibrium (SE).

In single-leader Stackelberg power game [5], both the leader and followers
improve their EE with respect to non-cooperative setting. Two kinds of SUs
exist when the followers reach a NE [4,9]. The first kind of SUs satisfies the
equation pNE

j = p∼
j and transmits with the corresponding ‘best SINR at the NE’

power. The second kind of SUs satisfies the equation pNE
j = pmax

j transmitting
with maximum power. When leader decreases power, its interference to other
SUs decreases. Then a new equilibrium is reached. The first kind of SUs keeps in
the ‘best SINR’. However, their power decreases and their EE increases according
to (1). The power of the second kind of SUs is kept in pmax

j . But the interference
to them decreases as the leader and the first kind of SUs decrease their power.
Hence, the SINR of the second kind of SUs increases and their EE increases
according to (1). Last, if the leader continues to decrease power, the second
kind of SUs will transform into the first kind of SUs. That means all the SUs
transmit with the corresponding ‘best SINR’ power and their EE increases. No
matter what power the leader chooses, followers enable to achieve a NE. With
the decrease in leader’s power, the EE of the two kinds of SUs increases. Thus,
the new NE, namely SE, is a Pareto improvement.

However, in Stackelberg power control game, only one-shot Pareto improve-
ment is achieved. What’s more, some prerequisites are needed. Leader needs
to acquire more knowledge than followers [6]. Followers are cognitive SUs able
to know the leader’s strategy [7]. However, in [6], distributed management was
ignored. In underlay CRNs, SUs are unable to sense as [7].

4 Distributed Multi-leader Stackelberg Power Control
Game

To achieve higher EE, a distributed multi-leader Stackelberg power control game
algorithm (DMSPG) is proposed in this section. In DMSPG, firstly, single-leader
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game achieves SE and one-shot Pareto improvement is reached. Then, multi-
ple leaders implement power-decreasing strategy to achieve continuous Pareto
improvements. Since SUs interfere with each other, the change of the leader’s
power can affect followers. Hence, followers adjust their power according to
their SINR to react to the leader. Finally, continuous Pareto improvements are
achieved to improve the total EE.

4.1 The Criterion of Choosing Leader in DMSPG Algorithm

In DMSPG algorithm, SU i∗ is chosen as leader from the followers. The criterion
is

i∗ = arg min {Qi} , γi > γtar
i , (7)

where Qi is

Qi =
ui (pi,P−i)

pi|gi|2 +
∑
j �=i

pi |hij |2
. (8)

In (8), the numerator includes the EE of SU i while the denominator consists of
the interference to PU and other SUs caused by SU i. A SU is chosen as leader
considering two aspects: (1) the SU induces more negative effects to the others;
(2) the SU makes less contribution to the whole system. Leader implements
Variable-step power-decreasing strategy to break the original NE. Then a SE is
reached.

4.2 The Proposed DMSPG Algorithm

The DMSPG algorithm is described with four steps.

– Step 1: the initialization of NPG
1. Execute NPG algorithm and the SUs reach a NE.
2. Once SUs achieve the equilibrium, they broadcast flag information INIT-

FINISHED + ID. INIT-FINISHED means initialization is finished and
ID represents the identification.

3. When those SUs succeed to hear the N − 1 INIT-FINISHED and equip-
ment ID, they broadcast flag LEADER-START. It means the process of
choosing leader starts.

– Step 2: choosing leader based on the criterion in (8)
1. All SUs calculate their own Q values. Then, Q values are set as the start

time of time back-off. SUs start to listen to the flag STOP-LEADER by
virtual timer fashion.

2. The SU whose timer is the first to become zero will broadcast flag STOP-
LEADER.

3. Once the other SUs listen to STOP-LEADER flag, the leader-choosing
process will stop.
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– Step 3: single leader performs power-decreasing game
1. The leader decreases power level with an initial step size Δp. The SINR

of the other SUs changes and the NE is broken. Then all the followers
have to play non-cooperative game to achieve a SE.

2. All SUs calculate their EE e.g. uj . Then all SUs except the leader set
their time back-off with uj as start time. These SUs start to listen to the
flag STOP-EE by a time back-off fashion.

3. Each SU sends a flag STOP-EE when the countdown finishes. The leader
calculates uj based on the time all the STOP-EE heard. The total social
welfare w of the system is calculated according to (2). If w is lower, it
means the step size Δp in (1) is big. SUs change to the original power and
leader shortens step size to 0.5 ∗ Δp. Then go back to (1). This process
keeps taking half the step size until w increases and the QoS of SUs is
satisfied. Then the transmit power of each SU remain unchanged. The
step size of the leader is retained.

4. Leader keeps repeating (3) with the step size retained in (3) till pre-
scribed accuracy requirement is satisfied. It means no more utility could
be attained even to decrease the leader’s power and the SE is achieved.

– Step 4: multiple leaders perform power-decreasing game
1. The leader chosen in Step 3 is put in leader set and does not take par-

ticipate in leader-choosing any more. Then according to Step 2, another
appropriate leader is chosen from followers.

2. The new leader takes power-decreasing strategy in Step 3. Other leaders
keep their original power.

3. Estimate whether the algorithm is convergent according to practical appli-
cation, for example, given terminal time. If it is not convergent, the
process goes back to (1) until it is.

4.3 Analysis of Multi-leader Game and Continuous Pareto
Improvements in DMSPG

The Uniqueness and Existence of SE. According to the analysis of single-
leader game, no matter what power lever the leader sets, the followers will achieve
a NE by non-cooperative game. If the leader chooses the power which maximizes
its utility, the leader and the followers will achieve a SE. In this paper, the SE
of multi-leader game exists as the single-leader Stackelberg game is played once
more after a new leader is chosen. According to [5], the uniqueness of a SE is
proved in single-leader Stackelberg game, the uniqueness of the SE in multi-
leader Stackelberg game in this paper can be proved as [5].

The Efficiency of DMSPG Analysis. According to the analysis of single-
leader game, the power of both leader and followers does not increase. In Step
4, the other leaders endure less interference and their SINR improves. Their
EE increases according to (1). What’s more, followers achieve one-shot Pareto
improvement and their EE increases. The other leaders’ power in leader set is
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invariable and followers’ power does not increase. The partial derivative of uj(·)
with respect to pj is

∂uj(pj , P−j)
∂pj

=
LR

Mp2j
(f ′(γj)γj − f(γj)). (9)

The uj(·) monotonously increases with respect to pj if γj is no more than the
solution γ∼

j to (6). When leader1 in Step 3 decreases power, its utility decreases.
According to Step 3, when the leader1 chooses the step, it should ensure that its
EE doesn’t decrease. If its SINR increases, its EE (utility) won’t decrease. Thus,
according to (9), this leader’s power decreases and its interference caused by the
other leaders and followers decreases much more. Hence, its SINR increases and
its QoS is satisfied.

Based on the above analysis, the EE of both other leaders and followers
increases while the leader1’s EE doesn’t decrease. Hence, the total EE improves
and a Pareto improvement is achieved. In Step 4, multiple leaders continue to
decrease power and continuous Pareto improvements are achieved. Given the
convergent conditions according to practical conditions, the algorithm ends.

Computational Complexity of DMSPG. The DMSPG algorithm ends in
finite time. In the first step of proposed algorithm, the initialization of NPG
results in a computation of O(N2). In the second step, every SU calculate its
own utility and the computational complexity is O(N). In the third step, the SUs
play NPG after the leader decreases its power, resulting a computation of O(N2).
In the fourth step, since another leader is chosen from the followers and the
Stackelberg game is played once more, the computational complexity is O(N3).
Thus, the overall computational complexity of proposed algorithm is O(N3). On
the other hand, for followers, the computational complexity is mainly decided
by the NPG, thus, the computational complexity of each follower is O(N2). For
each leader, the computational complexity is decided by the forth step, since
there are N SUs in total, the computational complexity is O(N).

5 Numerical Results

In underlay CRNs, nine SUs in set SUi, i ∈ [1, 9] are sorted based on communi-
cation distance. SU1’s communication distance is the nearest while SU9 is the
furthest. The comparison of the ESIA algorithm [3], the OL algorithm [6] and
the DMSPG algorithm is given. The ESIA algorithm is based on non-cooperative
game while the OL algorithm is based on single-leader game. The total bits M
is 80 and information bits L is 64. The bits rate R is 10 kbps. What’s more,
the SINR threshold of SU γtar is 6 dB and SINR threshold of PU γtar

pu is 8 dB.
The noise power δ2 is 5 × 10−15 and PU power Ppu is 0.03 W. In addition, the
precision is 5 and original step size is 0.001 W. The path loss A is 0.097.

Figure 2 shows the average SINR of PU. With the increase in the number of
SUs, SINR of PU decreases. However, the SINR of PU in DMSPG algorithm is
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Fig. 2. Average SINR of PU of three algorithms (Color figure online)

higher than that in ESIA algorithm and OL algorithm. This can be explained as
follows. In DMSPG, with the decrease in leader’s power, the other SUs’ power
decreases. Hence, the interference to PU decreases and the SINR of PU improves.
The ESIA is based on non-cooperative game and SUs cause more interference
to PU. In the OL algorithm, only one leader is chosen and SUs cause more
interference to PU.

Figure 3 shows the total power of SUs. With the increase in number of SUs,
the total power of SUs increases. However, SUs’ power in DMSPG is lower than
that in ESIA and OL. This is because SUs’ power is non-increasing in DMSPG.
ESIA is based on non-cooperative game and SUs’ power decreases less. In OL,
only one-shot Pareto improvement is achieved.

Fig. 3. Transmit power of SUs of three algorithms (Color figure online)
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Figure 4 shows the total utilities of SUs. With the increase in number of SUs,
the total utilities of SUs increase. The utilities of DMSPG are higher than ESIA
and OL. The reason is that DMSPG is based on multi-leader Stackelberg game
and enables to achieve continuous Pareto improvements. Thus, the proposed
algorithm achieves higher total EE of multiple SUs.

The transmit power of the SUs (use SU3, SU5, SU8 and SU9 as example)
with iteration times is shown in Fig. 5. We can see that the transmit power
converges to the equilibrium within 30 iterations, which proves the convergence
of proposed algorithm. The power of SU3 is lowest while the power of SU9 is
the highest. The reason is that the power of SU increases With the distance
of SU transceiver and the SUs are sorted based on communication distance as
mentioned above.

Fig. 4. Utilities of SUs of three algorithms (Color figure online)

Fig. 5. Transmit power of SUs with iteration times (Color figure online)
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6 Conclusion

In this paper, we aim at improving total EE of multiple users in green wire-
less communications. Considering distributed power control, we propose a dis-
tributed Stackelberg game power control algorithm to decrease SUs’ power.
Meanwhile, continuous Pareto improvements are achieved with multiple leaders
implementing power-decreasing strategies. Simulations testify that the proposed
DMSPG algorithm reduces SU’s power and improves the total EE of the system.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Grant No. 61540046) and the 111 Project of China (Grant No.
B08038).

References

1. Wang, Z., Jiang, L., Chen, H.: Optimal price-based power control algorithm in
cognitive radio networks. IEEE Trans. Wireless Commun. 16(11), 5909–5920 (2014)

2. Buzzi, S., Saturnino, D.: A game-theoretic approach to energy-efficient power control
and receiver design in cognitive CDMA wireless networks. IEEE J. Sel. Top. Sig.
Process. 5(1), 137–150 (2011)

3. Kuo, Y., Yang, J., Chen, J.: Efficient swarm intelligent algorithm for power control
game in cognitive radio networks. IET Commun. 7(11), 1089–1098 (2013)

4. Goodman, D.J., Mandayam, N.B.: Power control for wireless data. IEEE Pers. Com-
mun. 7(2), 48–54 (2000)

5. Lasaulce, S., Haye, Y., El Azouzi, R.: Introduction hierarchy in energy games. IEEE
Trans. Wirel. Commun. 8(7), 3833–3843 (2009)

6. Wang, L., Xu, W.-J., Niu, K.: Stackelberg equilibrium in energy-efficient power
control games. J. Beijing Univ. Posts Telecommun. 34(4), 75–79 (2011)

7. Le, T.-M., Lasaulce, S., Hayel, Y.: Green power control in cognitive wireless net-
works. IEEE Trans. Veh. Technol. 62(4), 1741–1754 (2013)

8. Bletsas, A., Khisti, A., Reed, D.: A simple cooperative diversity method based on
network path selection. IEEE J. Sel. Areas Commun. 24(3), 659–672 (2006)

9. Saraydar, C.U., Mandayam, N.B., Goodman, D.J.: Efficient power control via pric-
ing in wireless data networks. IEEE Trans. Commun. 50(2), 291–303 (2002)


	Green Distributed Power Control Algorithm for Multi-user Cognitive Radio Networks
	1 Introduction
	2 System Model and Problem Formulation
	3 Review of NPG and Stackelberg Game
	3.1 NPG Algorithm and NE
	3.2 The Single-Leader Stackelberg Game for Power Control

	4 Distributed Multi-leader Stackelberg Power Control Game
	4.1 The Criterion of Choosing Leader in DMSPG Algorithm
	4.2 The Proposed DMSPG Algorithm
	4.3 Analysis of Multi-leader Game and Continuous Pareto Improvements in DMSPG

	5 Numerical Results
	6 Conclusion
	References


