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Abstract. Harvesting energy from the environment is a method to
improve the energy utilization efficiency. However, most renewable
energy has a poor stability due to the weather and the climate. The
reliability of the communication systems will be influenced to a large
extent. In this paper, an energy-efficient downlink resource allocation
problem is investigated in the energy harvesting communication systems
by exploiting wireless power transfer technology. The resource alloca-
tion problem is formulated as a mixed-integer nonlinear programming
problem. The objective is to maximize the energy efficiency while satis-
fying the energy causality and the data rate requirement of each user. In
order to reduce the computational complexity, a suboptimal solution to
the optimization problem is obtained by employing a quantum-behaved
particle swarm optimization (QPSO) algorithm. Simulation results show
that the QPSO algorithm has a higher energy efficiency than the tradi-
tional particle swarm optimization (PSO) algorithm.
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1 Introduction

Green communication is an attractive solution to improve the energy utilization
efficiency of communication systems. Resource management strategies such as
power control and resource allocation are effective measures to save energy, which
can minimize the total transmission power and maximize the system throughput,
respectively. In addition, energy harvesting communication is an emerging trend
of green communication [1]. It can provide electrical energy for communication
equipments by collecting renewable energy such as solar energy and wind energy
from the surroundings, which can significantly reduce energy consumption.

Energy harvesting communication has recently attracted extensive research
attention. The stochastic characteristic of energy harvesting was taken into
account in [2]. An optimal power policy was proposed, which can maximize the
average throughput under additive white Gaussian noise channel. The authors of
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[3] presented an optimum transmission policy under the constraints of the energy
storage and the energy causality. It was shown that the proposed transmission
policy could maximize the short-term throughput of an energy harvesting node.
The optimal packet scheduling problem in a single-user communication scenario
with an energy harvesting transmitter was investigated in [4]. The goal was
minimize the transmission time by adaptively changing the transmission rate
according to the traffic load and available energy. In [5], for single-user Gaussian
channel and two-user Gaussian multiple access channel, two online algorithms
for minimizing packet transmission time were developed, respectively. In two-
hop communication systems with an energy harvesting source and a non-energy
harvesting relay, the joint time scheduling and power allocation problem was dis-
cussed in [6]. The objectives of short-term throughput maximization and trans-
mission time minimization were both taken into consideration. An optimal power
allocation strategy was explored in energy harvesting and power grid coexisting
wireless communication systems [7]. The optimization problem was formulated
as minimizing the grid power consumption with random energy and data arrival.
The optimal solution was obtained by the Lagrangian multiplier method.

However, there still exist a series of challenges for energy harvesting commu-
nication. Most renewable energy has a poor stability due to the weather and the
climate, which will bring about serious effect on the communication system per-
formance. Moreover, because the capacity of the existing energy storage device is
limited, the restriction of limited energy should be taken into account. Wireless
power transfer technology [8,9] can provide electrical power for communication
equipments by harvesting energy from the electromagnetic wave. It is able to
overcome the disadvantage of the renewable energy that is easily affected by the
climate change, which is a promising solution to energy harvesting communica-
tion. Therefore, there is a strong motivation to investigate the resource allocation
problem in the energy harvesting communication systems using wireless power
transfer technology.

In this paper, we propose an energy-efficient resource allocation strategy in
the energy harvesting communication systems. Specifically, an energy-efficient
downlink resource allocation problem is investigated in the wireless power trans-
fer systems. The objective is to maximize the energy efficiency under the con-
straints of the energy causality and the data rate requirement of each user.
The formulated optimization problem is a mixed-integer nonlinear programming
problem, which is difficult to derive the optimal solution. In order to degrade
the computational complexity, a quantum-behaved particle swarm optimization
(QPSO) algorithm is exploited to solve the optimization problem. A suboptimal
solution is obtained with an acceptable complexity.

2 System Model and Problem Formulation

The network architecture of wireless power transfer systems is shown in Fig. 1.
The scenario of one base station and multiple users are taken into account. The
base station is provided with electrical energy by the traditional power grid.
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Each user is equipped with an energy harvesting equipment, which can harvest
energy from the eletromagnetic wave in the surrounding environment. When the
base station sends data to an active user, other idle users can harvest energy
from the received eletromagnetic wave. The collected energy is stored in the
energy storage device, which is used to communicate with the base station at a
certain time in the future.

Fig. 1. Network architecture of wireless power transfer systems.

Energy-efficient downlink resource allocation problem is investigated in the
above wireless power transfer systems. It is assumed that the base station sends
data to K users by N sub-carriers during T time slots. Meanwhile, only one user
can communicate with the base station at the t-th time slot, which is denoted
by a binary variable δt,k ∈ {0, 1}. Moreover, pt,n,k indicates the transmission
power for the k-th user on the n-th sub-carrier at the t-th time slot. The system
capacity can be obtained by the following expression:

Ctotal =
T∑

t=1

N∑

n=1

K∑

k=1

δt,kW log2

(
1 +

pt,n,kh2
t,n,k

N0W

)
, (1)

where W is the sub-carrier bandwidth, ht,n,k denotes the channel gain for the
k-th user on the n-th sub-carrier at the t-th time slot, and N0 represents the
power spectral density of additive white Gaussian noise. At the same time, sys-
tem energy consumption per second is shown as:

Etotal = PC +
T∑

t=1

N∑

n=1

K∑

k=1

δt,kpt,n,k − PH , (2)

where PC denotes the circuit energy consumption per second and PH indicates
the energy harvested by idle users per second. The specific expression of PH is
denoted as:

PH =
T∑

t=1

N∑

n=1

K∑

k=1

δt,kpt,n,k

⎛

⎝
∑

j �=k

ηh2
t,n,j

⎞

⎠, (3)
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where η indicates the energy harvesting efficiency of the idle user. Here, for sim-
plicity, we assume that each idle user has the equal energy harvesting efficiency.
Moreover, ht,n,j represents the channel gain for the j-th idle user on the n-th
sub-carrier at the t-th time slot.

The objective of resource allocation problem is to maximize the energy effi-
ciency while satisfying several constraint conditions. This is an optimization
problem, which can be formulated as follows:

maximize
δt,k,pt,n,k

Ctotal

Etotal
, (4a)

C1 :
N∑

n=1

K∑

k=1

δt,kpt,n,k ≤ Pmax,∀t, (4b)

C2 :
N∑

n=1

K∑

j=1

δt,jpt,n,j

(
ηh2

t,n,k

) ≥ (1 − δt,k) Pmin
k ,∀t, k, (4c)

C3 :
T∑

t=1

N∑

n=1

δt,kW log2

(
1 +

pt,n,kh2
t,n,k

N0W

)
≥ Rmin

k ,∀k, (4d)

C4 : δt,k ∈ {0, 1} ,∀t, k, (4e)

C5 :
K∑

k=1

δt,k ≤ 1,∀t, (4f)

C6 : pt,n,k ≥ 0,∀t, n, k, (4g)

where the objective function is the energy efficiency and its unit is bits per Joule
(bits/J). The first constraint indicates that the total transmission power in the
base station is limited to the maximum power Pmax. The second constraint
ensures that the energy harvested by the k-th idle user at the t-th time slot
is no less than the minimum value Pmin

k , which is called the energy causality.
The third constraint guarantees that the data rate of the k-th user is greater
than or equal to the minimum value Rmin

k . The fourth and fifth constraints show
that the base station only sends data to one user at the t-th time slot. The
sixth constraint reveals that the transmission power in the base station is non-
negative. It is noted that the objective function is nonlinear. Besides, the values
of δt,k and pt,n,k are discrete and continuous, respectively. As a consequence, the
above optimization problem is a mixed-integer nonlinear programming problem.

3 Suboptimal Solution to Resource Allocation
Optimization Problem

The optimization problem in (4) is quite difficult to obtain a globally optimal
solution with a low computational complexity. Therefore, a heuristic algorithm
is used to derive a suboptimal solution with an acceptable complexity.
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The QPSO algorithm [10,11] is adopted to solve the optimization problem
in (4). The QPSO algorithm is an improved version of the traditional PSO
algorithm [12]. Compared with the PSO algorithm, it can achieve a globally
suboptimal solution. The PSO algorithm is easy to fall into a locally optimal
solution. The original constrained optimization problem needs to be transformed
to an unconstrained form, which can be done by the penalty function method.
Thus, a fitness function that consists of one objective function and one penalty
function is constructed as follows:

F (δt,k, pt,n,k) = f (δt,k, pt,n,k) − αPf (δt,k, pt,n,k) , (5)

where f (δt,k, pt,n,k) is the objective function, α denotes the penalty factor, and
Pf (δt,k, pt,n,k) indicates the penalty function that includes six items:

Pf (δt,k, pt,n,k) = P 1
f + P 2

f + P 3
f + P 4

f + P 5
f + P 6

f . (6)

They are corresponding to six constraints of the optimization problem in (4),
which are shown as:

P 1
f =

T∑

t=1

[
max

(
0,

N∑

n=1

K∑

k=1

δt,kpt,n,k − Pmax

)]2

, (7a)

P 2
f =

T∑

t=1

K∑

k=1

[max (0, A)]2, (7b)

P 3
f =

K∑

k=1

[max (0, B)]2, (7c)

P 4
f =

T∑

t=1

K∑

k=1

(
δ2t,k − δt,k

)2
, (7d)

P 5
f =

T∑

t=1

[
max

(
0,

K∑

k=1

δt,k − 1

)]2

, (7e)

P 6
f =

T∑

t=1

N∑

n=1

K∑

k=1

[max (0,−pt,n,k)]2, (7f)

where max (·, ·) returns a greater number between two numbers. Moreover, for
the A and B in P 2

f and P 3
f , their expressions are given as:

A = (1 − δt,k) Pmin
k −

N∑

n=1

K∑

j=1

δt,jpt,n,j

(
ηh2

t,n,k

)
, (8)

B = Rmin
k −

T∑

t=1

N∑

n=1

δt,kW log2

(
1 +

pt,n,kh2
t,n,k

N0W

)
. (9)
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In order to apply the QPSO algorithm to the formulated optimization prob-
lem, resource allocation results of K users are defined as the particle position.
We assume that there are M particles in the multi-dimensional space. For the
m-th particle, its position vector Xm can be expressed as:

Xm =
(
X1

m,X2
m, ...,Xk

m, ...,XK
m

)
, (10)

where Xk
m denotes the resource allocation result of the k-th user. The specific

expression of Xk
m is shown as:

Xk
m = (δ1,k, δ2,k, ..., δT,k, p1,1,k, p1,2,k, ..., pT,N,k) . (11)

It can be seen that Xk
m is a multi-dimensional vector. The first T elements

indicate the time slot allocation result. The rest TN elements denote power
allocation result on different sub-carriers at different time slots.

The position of each particle is updated according to the following iterative
equation:

{
Xm(s + 1) = P + β |C(s) − Xm(s)| · ln (1/u) , r ≥ 0.5
Xm(s + 1) = P − β |C(s) − Xm(s)| · ln (1/u) , r < 0.5 , (12)

where s denotes the iteration number and the maximum iteration number is S,
β is the contraction-expansion coefficient, u and r are both random numbers
between 0 and 1, and C(s) is the mean best position. The value of β in the s-th
iteration can be calculated by:

β = 0.5
S − s

S
+ 0.5. (13)

In addition, C(s) can be obtained by:

C(s) =
1
M

M∑

m=1

Pm(s), (14)

where Pm(s) is the best position of the m-th particle in the s-th iteration. Based
on the fitness function in (5), Pm(s) can be derived by:

Pm(s) =
{
Xm(s), F [Xm(s)] > F [Pm(s − 1)]
Pm(s − 1), F [Xm(s)] ≤ F [Pm(s − 1)] . (15)

Moreover, the vector P in (12) is given by the following expression:

P = ϕ · Pm(s) + (1 − ϕ) · G(s), (16)

where ϕ is a random number between 0 and 1, and G(s) denotes the global best
position of all the particles in the s-th iteration. G(s) can be obtained by:

{
ξ = arg max

1≤m≤M
{F [Pm(s)]}

G(s) = Pξ(s)
. (17)
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4 Simulation Results and Analysis

In this section, the performance of the proposed resource allocation strategy is
evaluated by simulation. The related parameters are set as T = 5, N = 32, W =
15 kHz, N0 = 2 × 10−8 W/Hz, PC = 5 W, α = 1.5, and S = 10. Without loss of
generality, we assume that the values of Pmin

k and Rmin
k are 0.1 W and 1 Mbps,

respectively. Moreover, the values of different ht,n,k are generated by random
numbers with uniform distribution between 0 and 1. In addition, an existing
resource allocation algorithm based on particle swarm optimization (PSO) [12]
is used for comparison.

Figure 2 presents the relationship between the energy efficiency and the num-
ber of particles for different numbers of users under QPSO and PSO algorithms.
It can be observed that the energy efficiency increases gradually as the number of
particles increases. The reason is that more accurate suboptimal solution can be
obtained under more particles. Moreover, for the QPSO algorithm, the energy
efficiency increases with the growth of the number of users. This is because
more idle users can harvest the energy from the received electromagnetic wave.
In addition, the QPSO algorithm has a higher energy efficiency than the PSO
algorithm under the same number of users. It can be explained that the QPSO
algorithm can obtain a globally suboptimal solution while the PSO algorithm is
easy to fall into a locally optimal solution.
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Fig. 2. Energy efficiency versus number of particles with η = 0.1 and Pmax = 10 W.

Figure 3 depicts the relationship between the energy efficiency and the num-
ber of particles for different energy harvesting efficiency under QPSO and PSO
algorithms. For the QPSO algorithm, we can see that the energy efficiency grows
with the increase of the energy harvesting efficiency from 0.1 to 0.5. That is
because idle users can harvest more energy from the received eletromagnetic
wave. Additionally, the QPSO algorithm with η = 0.1 outperforms the PSO
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algorithm with η = 0.3. The reason is that the QPSO algorithm can effectively
avoid searching the solution in a local area to a great degree.
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Fig. 3. Energy efficiency versus number of particles with K = 10 and Pmax = 10 W.

Figure 4 illustrates the relationship between the energy efficiency and the
number of users for different energy harvesting efficiency under QPSO and PSO
algorithms. We can find that the energy efficiency rises up as the number of
users increases. That is because more idle users can harvest the energy from
the received electromagnetic wave. Furthermore, although η = 0.1, the QPSO
algorithm has a better performance in terms of the energy efficiency than the
PSO algorithm with η = 0.3. The reason is that the PSO algorithm cannot
obtain a globally suboptimal solution.
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Fig. 4. Energy efficiency versus number of users with M = 20 and Pmax = 10 W.
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Fig. 5. Energy efficiency versus number of users with η = 0.1 and M = 20.

Figure 5 shows the relationship between the energy efficiency and the number
of users for different the maximum power under QPSO and PSO algorithms. It
can be seen that the energy efficiency increases with the growth of the maximum
power under the QPSO algorithm. It can be explained that the active user can
send signal with a higher power. Thus, a higher system capacity can be obtained.
At the same time, all the idle users can harvest more energy. In addition, the
QPSO algorithm with Pmax = 5 W has a better performance than the PSO
algorithm with Pmax = 10 W. This is because the QPSO algorithm can overcome
the disadvantage of the PSO algorithm to a large extent.

5 Conclusion

In this paper, an energy-efficient resource allocation problem based on QPSO
algorithm was presented in the wireless power transfer systems. The resource
allocation problem was formulated as a mixed-integer nonlinear programming
problem. The objective was to maximize the energy efficiency under the con-
straints of the energy causality and the data rate requirement of each user.
Moreover, the suboptimal solution to the formulated optimization problem was
derived by introducing the QPSO algorithm. The proposed resource allocation
strategy has a higher energy efficiency by the simulation evaluation. For sim-
plicity, we assume that the base station only sends data to one user at one time
slot. Multiple users can be provided service at the same time in the practical
communication systems, which will be taken into account in future work.
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