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Abstract. Considering that the spectrum resources are becoming increasingly
demand, maximum channel capacity is very crucial for future wireless com-
munication systems, especially for cognitive radio networks (CRNs). However,
most existing works usually assume that channel parameter estimation is perfect,
which is often damped in practical systems. In this paper, we investigate the
robust maximum channel capacity problem in the CRNs. Then assuming that
channel parameter uncertainty is bounded, we consider that all channel
parameter uncertainties are described by ellipsoid sets. From the perspective of
worst-case optimization, we formulate it as a semi-infinite programming
(SIP) problem. Furthermore, an optimal iterative algorithm based on the dual
decomposition theory and Lagrange multiplier algorithm is applied. Simulation
results validate that our robust scheme can achieve the channel capacity maxi-
mization considering the worst-case and strictly guarantee the power interfer-
ence requirement of second users (SUs) under all parameters’ uncertainties.

Keywords: Capacity maximization � CRNs � Ellipsoidal set � Distributed
algorithm � Robust optimization

1 Introduction

In recent years, with the rapid development and the wide application of radio com-
munication technology, the demand for wireless spectrum resources becomes
exceedingly urgent. According to the report by Federal Communication Commission
(FCC), the authorized spectrum utilization is obviously inefficient since the fixed
spectrum allocation approach [1]. Dr. Mitola first proposed the concept of cognitive
radio technology [2], which is to establish communication among unauthorized users
without exceeding the interference that primary users (PUs) can tolerate.

The problem of assigning power to different SUs has recently been an area of active
research. There are many papers [3, 4] addressing the problem of channel capacity
maximization under the assumption that the parameters and constraints are perfect.
However, this information is subject to errors due to measurement uncertainties in
practical systems. We often call the corresponding problems for the “nominal” problem
[5]. However, these parameters are time-varying, imperfect or uncertainty. Several
researches on the problem of parameter uncertainties have been investigated in the
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CRNs. The authors investigate state estimation problems for nonlinear systems with
parameter uncertainties. A new robust unscented Kalman filter is devised by analyzing
the influence which parameter uncertainties give to covariance matrix [6]. Robust
power control strategies for cognitive radios in the presence of sensing delay and model
parameter uncertainty is investigated [7]. The authors use a discrete-time Markov chain
(DTMC) to characterize the primary users’ dynamics as well as the fading channel.
Furthermore, most of existing algorithms for power control mechanism problem are
centralized [8, 9], where the parameter control and transmission is completed by the
base station. Nevertheless, the centralized scheme has obvious computation and
transmission overhead that is a shortcoming of the centralized way. Orthogonal fre-
quency division multiplexing (OFDM) has been considered a potential transmission
technology for CR systems. We investigated robust power allocation by considering an
OFDM framework with transmit power budget and interference threshold into account
[10]. In this paper, we investigate the worst case robust formulation under distributed
way [11] in cognitive radio wireless ad-hoc networks to maximize channel capacity
while keeping the SINR amount of SU within relatively high range.

Considering the above problems, robust optimization techniques are more appro-
priate obviously. Firstly, we define an uncertainty set, which is an ellipsoid set that
captures the parameter uncertainty. Secondly, the robust capacity maximization prob-
lem can be converted into a SIP problem, which is transformed into a second order
cone programming (SOCP) problem [12] under the worst-case. Thirdly, a distributed
algorithm is proposed based on dual decomposition theory and Lagrange multiplier
algorithm [13] is proposed to achieve an optimal solution. Finally, the equivalent
constraint and the iterative algorithm derived from parameter uncertainty are proposed
to acquire optimal solution [14], and the theoretical discussions between robust algo-
rithm and non-robust algorithm are demonstrated by simulation results.

2 System Model and Robust Distributed Formulation

2.1 System Model

We consider an ad-hoc cognitive radio network as Ref. [15], i.e., each link consists of a
transmitter node and a receiver node. Assume that there are K = {1, 2, 3, …, K}
cognitive links and only one primary link in the region of interest.

In this paper, we pay attention to the underlay paradigm in CRNs. In this model,
SUs can always access the channel that is assigned to PUs, in which the total inter-
ference introduced to PUs is strictly less than a predefined threshold which PUs can
tolerate as follows, i.e.,

Xk
i¼1

gipi � Ith: ð1Þ

where gi denotes the channel gain between the cognitive transmitter (CR-Tx) of link
i to the PU receiver (PU-Rx). pi denotes the transmission power of the CR-Tx for link
i. Ith represents the permissible interference threshold for PU-Rx.
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To guarantee the normal work of the system, the transmission power of each SU
should not exceed its power budget. We have

pi � pmax
i ; 8i 2 K: ð2Þ

where pi
max is the maximum transmission power cognitive receiver i.

The signal to interference ratio plus noise (SINR) at the cognitive receiver i is

SINRi ¼ hiipiP
j6¼i

hijpj þ ri
; 8i 2 K: ð3Þ

where hij denotes the channel gain from cognitive transmitter j to receiver i. ri is the
background noise at cognitive receiver i which includes both the thermal noise and
interference caused by the primary transmission.

The utility function chosen by each SU to be maximized is the data capacity since
spectrum efficiency is the main target of cognitive radio. While guaranteeing con-
straints both (1) and (3), the problem is formulated as

max
Xk
i¼1

logð1þ hiipiP
j 6¼i

hijpj þ ri
Þ

s:t: C1 :
Xk
i¼1

gipi � Ith; C2 : pi � pmax
i ; 8i 2 K:

ð4Þ

where the variable pi � 0 for all i. Moreover, a = [aij] can be denoted by the formula as
follows

aij ¼
0 ; if i ¼ j;

hij
hii

; if i 6¼ j:

8<
: ð5Þ

Then, objective function in (4) can translate to as follows

max
Xk
i¼1

logð1þ piP
j6¼i

aijpj þ ri=hii
Þ

s:t: C1 :
Xk
i¼1

gipi � Ith; C2 : pi � pmax
i ; 8i 2 K:

ð6Þ

In the rest of the section, we will formulate the robust optimization problems
considering uncertainties which include both the channel coefficient a and channel
gain g.
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2.2 Robust Distributed Formulation Under Ellipsoid Uncertainty Set

We firstly consider the uncertainties of channel parameter matrix a and channel gain gi,
and use the ellipsoid set to depict the corresponding parameter uncertainty.

Let ai denote the uncertainty set of the ith row for matrix a, which can capture the
perturbation of interfering channel gains relative to the main channel gain of link
i. Denote the actual standardized channel gain between user j’s transmitter and user i’s
receiver as �aij þDaij, where �aij is the nominal value, and Daij is the corresponding
uncertainty part. Hence, the uncertainty set of ai for �aij under ellipsoid approximation
can be expressed as:

ai ¼ �ai þDai : Daij
�� ��2

2 � e20; 8j 6¼ i; i 2 K
n o

: ð7Þ

where ‖x‖2 refers to the Euclidean norm [16], and ɛ0 is the positive upper bound on the
uncertainty region.

Let gi denote the uncertainty set of the ith row of matrix g, gi describes the channel
gain between cognitive transmitter i and PU receiver, and gi ¼ �gi þDgi, where �gi is the
nominal value, and the corresponding uncertainty part is Dgi : Then the certainty set gi
under ellipsoid approximation is formulated as:

gi ¼ �gi þDgi : Dgik k22 � e2i ; 8i 2 K
n o

: ð8Þ

where ɛi is the upper bound on the uncertainty region.
The robust power allocation algorithm with capacity maximization under ellipsoid

set can be represented by

max
Xk
i¼1

logð1þ piP
j 6¼i

ð�aij þDaijÞpj þ ri=hii
Þ

s:t: C1 :
Xk
i¼1

ð�gi þDgiÞpi � Ith; C3 : Daij
�� ��2

2 � e20; 8j 6¼ i; i 2 K;

C2 : pi � pmax
i ; 8i 2 K; C4 : Dgik k22 � e2i ; 8i 2 K:

ð9Þ

The robust capacity maximization problem (9) is an infinite number of constraints
relative to the sets ai and gi, i.e., it is a SIP problem. We can transform the SIP problem
into an equivalent problem with finite constraints under the worst-case. Considering
Cauchy–Schwartz inequality, the equivalent problem as follows

max
ai2a

X
j6¼i

Daijpj

( )
¼ eo

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
j6¼i

p2j

s
; max

gi2g

X
i

Dgipi

( )
¼ ei pik k2; 8i 2 K: ð10Þ

Then, the problem (9) is transformed into an equivalent problem under the
worst-case.
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3 The Distributed Capacity Maximization Algorithm

In this section, we develop a worst-case distributed capacity maximization problem by
dual decomposition theory. Hence, in this case, we transform constraint C1 in (9) into
an equivalent problem as follows

ei pk k2 � � �gTpþ Ith; 8i 2 K: ð11Þ

However, it is difficult to decompose the coupled part ɛi‖p‖2. Therefore, we propose
a worst-case distributed capacity maximization algorithm along with the convergence,
i.e., this constraint can be represented byX

i

ð�gi þ eiÞpi � Ith; 8i 2 K: ð12Þ

Taking into account the all parameters uncertainties, where the uncertainties is the
worst-case level that is the upper bound of ellipsoid sets, the worst-case distributed
capacity maximization problem can be expressed as

max
Xk
i¼1

logð1þ piP
j 6¼i

�aijpj þ eo
ffiffiffiffiffiffiffiffiffiffiffiP
j6¼i

p2j
r

þ ri=hii
Þ

s:t C1 :
Xk
i¼1

ð�gi þ eiÞpi � Ith; C2 : pi � pmax
i ; 8i 2 K :

ð13Þ

Therefore, robust distributed algorithm take more conservative protection into
account of the cognitive radio system. The problem (13) is not convex optimization
problem. We may rewrite (13) as follows

�min
Xk
i¼1

logð1þ piP
j6¼i

�aijpj þ eo
ffiffiffiffiffiffiffiffiffiffiffiP
j6¼i

p2j
r

þ ri=hii
Þ

s:t: C1 :
Xk
i¼1

ð�gi þ eiÞpi � Ith;C2 : pi � pmax
i ; 8i 2 K:

ð14Þ

By using the Lagrange multiplier algorithm, a new objective Lagrange function is
defined as

Lðfpig; ui; viÞ ¼

�
Xk
i¼1

logð1þ piP
j 6¼i

�aijpj þ eo
ffiffiffiffiffiffiffiffiffiffiffiP
j 6¼i

p2j
r

þ ri=hii
Þ þ uið

X
i

ð�gi þ eiÞpi=Ith � 1Þþ viðpi=pmax
i � 1Þ:

ð15Þ
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where ui � 0 and vi � 0 are Lagrange multipliers for the two constraints in (14),
respectively. Furthermore, the updating function is defined as

uiðtþ 1Þ ¼ maxðuiðtÞþ aL uiðtÞ; 0Þ; 8i 2 K : ð16Þ
viðtþ 1Þ ¼ maxðviðtÞþ bL viðtÞ; 0Þ; 8i 2 K : ð17Þ

where a and b are the step size which are positive, and t is the iteration times.
Moreover, the corresponding gradient L_ui and L_vi updating function is given by

L ui ¼
X
i

ð�gi þ eiÞpi � Ith; L vi ¼ pi � pmax
i ; 8i 2 K: ð18Þ

To achieve the optimal solution of each SU in the robust formulation, the optimal
solution pi

* for (14) by considering the Karush-Kuhn-Tucker (KKT) conditions can be
calculated through the following equality

@Lðfpig; ui; viÞ
@pi

¼ 0; 8i 2 K : ð19Þ

Therefore, we can get the optimal solution pi
* for each SU as follows

p�i ¼
1

ðui
P
i
ð�gi þ eiÞ=Ith þ vi=pmax

i Þ ln 2� ð
X
j 6¼i

�aijpj þ ri=hii þ e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
j6¼i

p2j

s
Þ: ð20Þ

Different form the traditional water filling solution, the cognitive radio system will
strictly converge to the optimal solution in (20). Hence, the robust distributed algorithm
can tackle above formulation [10].

4 Performance Evaluation

4.1 Simulation Settings

In this section, we describe the detail of parameters setting and the channel model for
SUs and PUs in our simulations. Firstly, the related parameters and their typical value
are provided in Table 1. And, the Euclidean norm is adopted for all parameters’
uncertainty regions in our simulations.

4.2 Simulation Results

Simulation results are provided to compare the performance of robust algorithm with
the non-robust algorithm under the underlay network scenario. Here, the non-robust
method refers to the algorithm that does not take channel uncertainties into account and
directly utilizes the parameters all channels as if they were perfect. However, we
consider the channel parameter uncertainties in robust algorithm.
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In Fig. 1, we compare the power allocation algorithms with iteration times in the
non-robust scheme and the robust scheme. With the increasing number of iterations,
robust algorithm and non-robust algorithm quickly tend to a stable value that not
exceed its power budget, i.e., establish a balance. Simulation results show that the
optimal power of robust algorithm is slightly less than the non-robust algorithm. That’s
because the robust algorithm guarantees an acceptable level of performance under
worst case conditions.

In Fig. 2a, we show the performance of channel capacity for the non-robust scheme
and the robust scheme, which characterize the trade-off between uncertainty and net-
works throughout. Under the worst-case, the maximum channel capacity of robust
algorithm is almost equal to the non-robust algorithm, which shows the superiority of
the robust algorithm. In Fig. 2b, we compare total interference of various power
allocation algorithms. The straight line is the permissible interference power level. It
can be observed that the interference caused by SUs transmitter to PU receiver under
robust algorithm is always below the permissible threshold while the interference under
non-robust algorithm exceed permissible threshold. The non-robust algorithm is
not as successful as the robust algorithm at preventing violations of the permissible

Table 1. Simulation parameters setting

Related parameters Typical valves

Number of PUs 1
Number of SUs 3
PU maximum interference threshold 3:5� 10�10 mw
Perturbation rang of uncertainty parameters ɛ0 10%
Perturbation rang of uncertainty parameters ɛi 10%
SU maximum transmit power P ½1:1; 1:2; 1:3� mw
Average additive noise power ri at SU receiver 0:0001 mw
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Fig. 1. Convergence of robust algorithm and non-robust algorithm
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interference power level. Therefore, we can summarize that robust algorithm always
guarantee the quality of services for PU.

To compare the SINR of SUs receiver, we plot the SUs’ SINR for the two power
allocation algorithms in Fig. 3. Simulation results show that the SINR of robust
algorithm is slightly less than non-robust algorithm because of considering parameter
uncertainty under the worst-case. Moreover, the non-robust algorithm violated the
permissible interference power level as in Fig. 2b. Therefore, the robust algorithm for
cognitive radio wireless ad-hoc networks can attain a good trade-off between uncer-
tainty and capacity.

In Fig. 4, we depict power convergence properties of three users with iteration
times for robust algorithm and non-robust algorithm. As seen in Fig. 4, both the
proposed scheme and non-robust scheme quickly converge to a certain value which
does not exceed the maximum power upper threshold. However, the converge value of
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Fig. 2. Performance comparison for robust scheme and non-robust scheme

0 10 20 30 40 50
5

10

15

20

25

Iteration

S
IN

R
 (

db
)

CR1
CR2
CR3

0 10 20 30 40 50
5

10

15

20

25

30

Iteration

S
IN

R
 (

db
)

CR1
CR2
CR3

                (a) Robust Algorithm                                        (b) Non-Robust Algorithm 

Fig. 3. SU SINR comparison between under robust algorithm and under non-robust algorithm
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the proposed scheme is less than that of the non-robust method, it is due to the
proposed scheme that considers parameter uncertainty is consider to sacrifice one’s
own power. These results also demonstrate that the more robustness the system is, the
more efficient the robust algorithm is.

5 Conclusions

In this paper, we have studied power allocation with parameter uncertainty in underlay
CRNs. To maximize the channel capacity under the constraints SU transmit power and
interference thresholds, we proposed robust channel capacity maximization algorithm
that ensure power threshold and PUs’ quality of service requirement. We first describe
ellipsoid set model for parameter uncertainty, and formulate it as a standard SOCP
problem by considering the worst-case. Then, we apply dual decomposition theory to
tackle SOCP problem. Simulation results show that robust algorithm can achieve
almost the same maximum channel capacity as the non-robust algorithm.

The study of distributed robust optimization, in general, remains wide open, with
many challenging issues and possible applications where robustness to uncertainty is as
important as optimality in the nominal model. In the future, we will plan to extend our
work to a multiuser system to further study capacity characteristics.
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