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Abstract. Duffing oscillator is used to detect weak signal in strong noise
because traditional linear methods cannot work correctly in this situation.
Normal Duffing oscillator is used under broadband noise because it is immune to
broadband noise. But it is not suitable in narrowband noise because zero
expectation of noise is damaged in narrowband noise. In this paper, the dif-
ference influence to Duffing oscillator between broadband noise and narrowband
noise is analyzed and the resistance of Duffing oscillator to narrowband noise is
proved. Then a new frequency detection method based on higher initial driving
force amplitude and duration of cycle state is developed. Finally, the appropriate
initial amplitude needed in this method is confirmed and the method is verified
that it can detect frequency in narrowband noise by simulation.
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1 Introduction

In modern communication, weak signal detection is more and more important because
weak signal is usually used or emergent in communication to economize transmitting
power or just be restricted by channel which is normal in both signal reception and
signal detection. The comprehension of weak signal can be divided into two parts. On
the one hand, signal transmitting power is weak, and noise maybe not very strong or
even can be ignored. Due to low signal power, the SNR is very low. On the other hand,
signal power is not weak, but noise is strong enough to submerge signal. So the SNR is
also very low. In other words, one cause is low signal power, the other cause is strong
noise.

In complex channel with strong noise, weak signal mostly refers to the second kind
that signal power is not very weak but noise is really strong. The traditional linear
methods such as coherent method cannot detect weak signal when SNR is very low
because strong noise can make judgment threshold value inaccurate. So the nonlinear
method such as Duffing oscillator has been put forward to detect this kind of weak
signal. Duffing oscillator is a kind of chaos system that is immune to noise and
sensitive to signal [1]. Since Holmes found out that Duffing function contains strange
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attractor and seeming random process can be generated by deterministic Duffing
oscillator [2], many signal detection methods have been provided such as Lyapunov
exponent [3] and intermittent chaos theory [4].

However, these methods to detect weak signal are almost studied in broadband
noise because noise band is extended by scale transformation when it turns to com-
munication signal with high frequency from original mathematic model. The band of
noise in these methods is much wider than signal band, so noise that can really
influence signal is weaker than the value used in calculating SNR. Therefore, the
detection of weak signal in communication field should be studied under narrowband
noise that is suitable for more communication environments.

Frequency detection is the first step of signal detection with which other signal
parameters can be detected. Therefore, in this paper, frequency detection of weak signal
in narrowband noise is studied and analyzed. First, the basic property of Duffing
oscillator and method to detect signal frequency based on Duffing oscillator are
introduced. Then, the influence of narrowband noise to Duffing oscillator is analyzed
and compared with the influence in broadband noise. And an improved method based
on the analysis is raised to detect signal frequency in narrowband noise. Finally, the
method is verified and its parameter is set through simulation.

2 Basic Property of Duffing Oscillator

Duffing oscillator is the application of Duffing function. In many kinds of Duffing
oscillators, the most common one is Holmes-Duffing oscillator whose function is:

€xþ k _x� xþ x3 ¼ c cos tð Þ ð1Þ

where, c cos (t) is driving force, c is its amplitude and k is damping factor. There are
two important characteristics of Duffing oscillator, one is the sensibility to initial value
and the other one is immunity to noise.

2.1 Sensibility to Initial Value and Frequency Detection Method

There are two main states of Duffing oscillator that one is large scale cycle state and the
other is chaos state and they are decided by initial value of driving force amplitude. To
driving force c cos(t), there is a critical amplitude of driving force cc. The state of
oscillator will change with increasing of actual amplitude of driving force. It stays in
chaos state when c < cc and turns into large scale cycle when c > cc and there is
explicit difference between the two states, so the small change of driving force
amplitude is converted to explicit change of oscillator state, that make Duffing oscil-
lator is sensitive to initial value.

Therefore, signal frequency can be detected by Duffing oscillator array with dif-
ference frequency. The initial driving force value of each oscillator is set as critical
value cc. When there is signal with the same frequency as some oscillator input, the
corresponding oscillator will turn into large scale cycle state and other oscillators will
keep in chaos state.
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2.2 Immunity to Gaussian White Noise

When there is noise in Duffing oscillator, the variable x of Duffing oscillator will be
interfered by Dx. So the function will turn into:

€xþD€xð Þþ k _xþD _xð Þ � xþDxð Þþ xþDxð Þ3¼ c cos tð Þþ n tð Þ ð2Þ

The result of subtraction between (1) and (2) is (3), where the higher order of Dx is
ignored because Dx is very small.

D€xþ kD _x� Dxþ 3x2Dx ¼ n tð Þ ð3Þ

The vector term of (3) is shown as (4)

_X tð Þ ¼ A tð ÞXðtÞþN tð Þ ð4Þ

where XðtÞ ¼ x1
x2

� �
¼ DxðtÞ

D _xðtÞ
� �

, Aðt) ¼ 0 1
1� 3x2 �k

� �
, NðtÞ ¼ 0

nðtÞ
� �

The result of (4) is

XðtÞ ¼ / t; t0ð ÞX0 þ
Z

/ t; uð ÞN uð Þdu ð5Þ

It can be considered as X tð Þ ¼ R
/ðt; uÞNðuÞdu because /(t, t0) X0 is transient

solution. The expectation of X(t) is EfXðtÞg ¼ R
/ðt; uÞEfNðuÞgdu ¼ 0.

According to the analysis above, the expectation of Dx and its derivative is zero.
Therefore, Duffing oscillator will be immune to noise as long as the expectation of
noise or interference is zero. Noise will not change the state of Duffing oscillator but
make its image rough.

3 Frequency Detection Method in Narrowband Noise

3.1 The Difference of Duffing Oscillator in Narrowband and Broadband
Noise

According the analysis above, the immunity of Duffing oscillator to noise is on the base
of Gaussian white noise whose expectation is zero. When noise band is not infinity,
noise expectation is nonzero and the expectation of Dx is nonzero either. So Duffing
oscillator is not completely immune to narrowband noise.

This conclusion can also be raised through analysis of noise frequency spectrum.
Duffing oscillator is firstly applied in dynamics system where driving force frequency is
1–10 Hz. When it is used in communication system where driving force frequency is
much more than the one in dynamics system, scale transformation has to be used. But
noise band will be extended by scale transformation at the same time. So the noise
power is very strong while real noise whose frequency range is similar to signal that
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can influence signal is not strong. So the conclusion of Duffing oscillator that it is
immune to noise is suitable in broadband noise but not in narrowband noise.

Due to the influence of strong narrowband noise, phase diagram of Duffing
oscillator is so rough that cycle and chaos state cannot be distinguished. Taking large
scale cycle state as an example, its phase diagram in broadband noise and narrowband
noise is different as shown in Figs. 1 and 2.

In Figs. 1 and 2, initial amplitude of driving force is 0.8261, and signal amplitude is
0.1. SNR is −10 dB and noise band is different in each figure. According to the result.
The large-scale cycle state is clear when noise band is 50 GHz that it is similar to phase
diagram without noise. With the reduce of noise band, phase diagram of Duffing
oscillator does not show the proper state that it displays like phase diagram of chaos.

(a)no noise                   (b)noise band 50GHz 

Fig. 1. Phase diagram of Duffing oscillator when there is no noise and there is noise whose band
is 50 GHz.

(a)noise band 500MHz            (b)noise band 50MHz 

Fig. 2. Phase diagram of Duffing oscillator when noise band is 500 MHz and 50 MHz.
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That is to say, under strong narrowband noise, oscillator will not be periodic or chaotic
as usual, and the conclusion that is obtained without noise is incorrect.

3.2 Improvement of Duffing Oscillator’s Resistance to Narrowband Noise

According to the analysis above, under strong narrowband noise, Duffing oscillator is
not immune to noise, but it can still resist the influence of noise.

Duffing function with narrowband noise can be expressed as:

ð€x0 þD€x0Þ þ kð _x0 þD _x0Þ � ðx0 þDx0Þ þ ðx0 þDx0Þ3 ¼ ðcþ nðtÞ
cosðtÞÞ cosðtÞ ð6Þ

Equation (6) is another expression of (2) with the same style as (1). The actual total

amplitude of driving force is c0 ¼ cþ nðtÞ
cosðtÞ where c is initial amplitude of Duffing

oscillator. According to the property of Duffing oscillator, when c′ > cc, the interfer-
ence of Duffing oscillator in cycle state can be ignored which means Dx′ = 0. So, as

long as the instantaneous maximum value of nðtÞ
cosðtÞ is smaller than the difference value of

initial driving force amplitude c and critical value cc, Duffing oscillator will not enter
chaos state. That is to say, the higher initial driving force amplitude is, the harder
Duffing oscillator enter chaos state.

If c′ < cc, Duffing oscillator will be influenced by narrowband noise seriously.
Assuming cos(t) > 0, because c > cc, the instantaneous value of noise is lower than
zero. Noise can be divided into two parts as n(t) = n1(t) + n2(t), where n1(t) < 0,

n2(t) < 0, let cþ n1 tð Þ
cos tð Þ ¼ cc, so the Duffing function turn into:

€x0 þD€x0ð Þ þ k _x0 þD _x0ð Þ � x0 þDx0ð Þ þ x0 þDx0ð Þ3 ¼ cþ n1 tð Þ
cos tð Þ þ

n2 tð Þ
cos tð Þ

� �
cos tð Þ

¼ cc þ
n2 tð Þ
cos tð Þ

� �
cos tð Þ

¼ cc cos tð Þþ n2 tð Þ
ð7Þ

And the perturbation equation correspondingly is

D€xþ kD _x� DxþðxþDxÞ3 � x3 ¼ n2ðt) ð8Þ

n2(t) is divided from n(t), and they have the same sign, so the instantaneous absolute
value of n2(t) is smaller than the one of n(t), and the same result can be reached when
cos(t) < 0. So the influence of n2(t) is less than n(t). That is to say, narrowband noise to
Duffing oscillator has been reduced.

Above all, when the total amplitude of driving force c′ that is the combination of
initial amplitude c and amplitude of signal input is higher than instantaneous value of

cc þ nðtÞ
cosðtÞ, Duffing oscillator will always be in large scale cycle state, which is similar to
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the state without noise. And the difference is the size of cycle orbit. When the total

amplitude of driving force c′ is lower than the instantaneous value of cc þ nðtÞ
cosðtÞ, the

influence of narrowband noise still exists. The higher the total amplitude of driving
force is, the smaller the influence is. Therefore, the increasing of initial driving force c
can improve the resistance of Duffing oscillator to narrow noise.

3.3 New Method to Detect Signal Frequency Based on the Improvement

According to analysis above, increase of initial driving force amplitude can improve the
resistance of Duffing oscillator to noise, but the influence of narrowband noise still
exists.

The zero expectation of noise is used in proof of immunity to noise, so it will need
enough time to reflect that the mean value of noise is zero. That is to say, if Duffing
oscillator can run for a long time, it will reach the state that is immune to noise in
broadband noise. It is also suitable to narrowband noise that the resistance of Duffing
oscillator will be displayed to maximum when Duffing oscillator runs for a longer time.
When the time is not enough long, the roughness of phase diagram or sequence
diagram will make the state of Duffing oscillator not clear which will influence the
judgment of state.

Therefore, the state of Duffing oscillator can be reached by detecting the total
duration of cycle state in narrowband noise. Even if there is still influence of nar-
rowband noise in sequence diagram, total duration of cycle state is longer when
oscillator is in cycle state theoretically than the one when oscillator is in chaos state
theoretically. So the relationship between the frequency of signal and Duffing oscillator
can be reached by detecting the total duration of cycle state. When the frequency of
signal is the same as Duffing oscillator, it is the equivalent to add the total amplitude of
driving force. That is to say, its duration of cycle state will be longer than the one
without signal.

Above all, there are two important steps in frequency detection under strong nar-
rowband noise. The first step is increasing initial driving force amplitude to an
appropriate value and the second one is judging Duffing oscillator state by duration of
cycle state instead of choice just between chaos state and cycle state.

4 Simulation

4.1 The Appropriate Initial Driving Force Amplitude

According to analysis above, initial driving force amplitude is critical value under
broadband noise, while it is higher than critical value under narrowband noise. So it
should be confirmed first before signal frequency detection.

Variation tendency of cycle time duration and driving force amplitude is reached to
confirmed appropriate initial driving force amplitude. It is shown as Fig. 3 and the
driving force amplitude whose duration of cycle state is long and next variation ten-
dency is increasing should be the appropriate one.
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According to Fig. 3, the variation tendency is the same as analysis result above. To
find out the appropriate initial value, the difference value is calculated and shown in
Fig. 4. The smallest difference that is not changing slowly is corresponding to the
appropriate value. From Fig. 4, it can be found that the appropriate value is between
1.0 and 1.2 in driving force amplitude. The accurate value of this part is shown in
Table 1. So the critical value of driving force in narrowband noise can be set as 1.0961
according to the result.

4.2 Verification of the New Method

Let the band of narrowband noise is 50 MHz, and the frequency of driving force is
60 MHz, and sample frequency is 6 GHz, so SNR = 0 dB means N0 = 10−10,
SNR = −10 dB means N0 = 10−9, where the amplitude of signal is 0.1. The frequency
spectrum of signal and noise with this two SNR is shown as Fig. 5.

As what is shown in Fig. 5, when SNR is 0 dB, signal is obvious in noise which is
the same as in broadband noise. but when SNR is −10 dB, signal is covered by noise
even if it is still obvious in broadband noise. The result of this two situation is shown in
Fig. 6.
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(a) only noise input            (b) signal and noise input 

Fig. 3. The variation tendency of cycle time duration and driving force amplitude. The abscissa
is driving force amplitude and ordinate is number of cycle point in simulation.
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Fig. 4. The partial difference of two variation tendency. The abscissa is driving force amplitude
and ordinate is difference number of cycle point in simulation between two situations above.
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Table 1. The difference of two variation tendency.

Amplitude Noise Signal Difference

1.0661 3881 4538 657
1.0761 4341 4447 106
1.0861 4473 4766 293
1.0961 4542 4633 91
1.1061 4350 4550 200
1.1161 4359 4693 334
1.1261 4420 4900 480
1.1361 4420 4825 405
1.1461 4283 4850 576
1.1561 4558 4887 329
1.1661 4513 4973 460
1.1761 4479 4907 428
1.1861 4561 4851 290
1.1961 4624 4820 196
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Fig. 5. The frequency spectrum of signal and noise with two SNR. The abscissa is time and
ordinate is amplitude.
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Fig. 6. The result of frequency detection mentioned in this paper. The abscissa is time and
ordinate is number of cycle point.
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According to Fig. 6, number of cycle point is on behalf of cycle state duration.
When the frequency of signal and oscillator is the same, the duration of cycle state is
obviously longer than others including the signal in wrong frequency and noise only.
When the SNR is 0 dB, the disparity is very obvious. With the reduction of SNR, the
disparity is reducing too. But the result is still able to be detected.

5 Conclusion

In the paper, the difference of Duffing oscillator in broadband noise and narrowband
noise is analyzed. It is raised that Duffing oscillator is not immune to noise in nar-
rowband noise like in broadband noise. But the resistance of Duffing oscillator to
narrowband noise can be improved by increasing initial driving force amplitude to an
appropriate value and the judgment of oscillator state can be more accurate by cal-
culating and comparing total duration of cycle time instead of choice between chaos
and cycle state. With this two ways, a new method to detect signal frequency is put
forward. Its appropriate driving force value is found out by variation tendency of cycle
time duration and driving force amplitude and its correctness is verified by simulation.
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