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Abstract. As a low computational complexity detection algorithm for
Massive Multi-Input-Multi-Output (MIMO) system, the well known fac-
tor graph belief propagation (BP) detection algorithm is effective for
binary phase shift keying (BPSK) signal, but not appropriate for quadra-
ture amplitude modulation (QAM) signal. In this paper, the complex
transmitted signal vector modulated by QAM is transformed into the
real valued bitwise vector which can be viewed as a transmitting sig-
nal vector modulated by BPSK. With the real valued bitwise vector
and transformed channel gain matrix, an improved bitwise factor graph
(BFG) graphic model is developed, and a BFG-BP algorithm is proposed
to detect QAM signals in Massive MIMO system. Over a finite time
of polynomial computational complexity of O(NT ) per symbol, where
NT denotes the number of transmitted antennas, the proposed BFG-BP
detection algorithm obtains the approximate optimum BER performance
of maximum likelihood detection algorithm with rapid convergence rate,
and also achieves the theoretical spectral efficiency at medium high aver-
age received signal-to-noise ratio. Simulation results prove the effeteness
of the proposed BFG-BP for detecting QAM signals in Massive MIMO
system.

Keywords: Massive MIMO · Detection algorithm · Bitwise factor
graph · Belief propagation · Bit error rate (BER) · Computational
complexity

1 Introduction

The detection algorithm for Massive Multi Input Multi Output (MIMO) system
captured much attention in recent years [1,2]. Due to the large scale antennas in
Massive MIMO system, the problem of obtaining optimum bit error rate (BER)
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along with lower computational complexity is non-deterministic polynomial-time
hard (NP-hard), and is difficult to be solved.

The maximum likelihood (ML) detection algorithm obtains the optimum
BER performance for MIMO system [3]. However, the computational complexity
of ML increases exponentially with the number of transmitting antennas, which
is too high for ML to be employed in Massive MIMO system. The traditional
linear detection algorithms, such as minimum mean square error (MMSE), have
much lower polynomial computational complexity than ML. But the BER per-
formance of MMSE is poor, and is required to be improved for Massive MIMO
system.

Recently, many detection algorithms for Massive MIMO system have been
investigated, such as the likelihood ascent search (LAS) algorithm [4], the
Markov Chain Monte Carlo (MCMC) algorithm [5], the Probabilistic Data Asso-
ciation (PDA) algorithm [6], the Markov random field (MRF) and the factor
graph (FG) based belief propagation (BP) detection algorithms [7,8], etc. They
obtain approximate optimum BER performance with polynomial computational
complexity. Particularly, the FG-BP detection algorithm has a relative low com-
putational complexity, and has a considerable potential of application in Massive
MIMO system. Though the FG-BP is effective for Binary Phase Shift Key-
ing (BPSK) signals, it is not appropriate for quadrature amplitude modulation
(QAM) signals.

In this paper, the complex transmitted signal vector modulated by QAM is
transformed into the real valued bitwise vector which can be viewed as a trans-
mitting signal vector modulated by BPSK. With the real valued bitwise vector
and transformed channel gain matrix, we develop an improved bitwise factor
graph (BFG) graphic model, and propose a novel BFG-BP algorithm to detect
QAM signals in Massive MIMO system. With one order polynomial computa-
tional complexity, the proposed BFG-BP obtains an approximate optimum BER
performance of ML, and achieves the theory spectral efficiency at a medium high
average received signal-to-noise (SNR) as well.

The rest of the paper is organized as follows. The detection model for Massive
MIMO system is presented in Sect. 2. Section 3 deduces the proposed BFG-BP
algorithm. Section 4 gives the corresponding computational complexity. The sim-
ulation is introduced in Sect. 5. Finally, Sect. 6 draws the conclusion.

Notation. In this paper, a vector and a matrix are represented with lower-
case and uppercase boldface letters. (·)T , (·)−1, (·)H , ‖·‖, ⊗, E {·} , � (·) and
� (·) denote transpose, inverse, complex conjugate transpose, 2-norm, Kronecker
product, statistical expectation, real part and imaginary part of a matrix, respec-
tively. C and R refer to the complex and real domain, respectively.

2 System Model

For both the point to point and the up-link multiuser Massive MIMO system
in single cell or non-cooperative multi cell, we employ the vertical Bell Layered
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space-time (VBLAST) system as the uncoded detection model [10]. For the
Massive MIMO system, hundreds and thousands of antennas are considered,
and the number of transmitted and received antennas are denoted as NT and
NR, respectively. The channel gain matrix can be written as

H′ =

⎡
⎢⎢⎢⎣

h′
11 h′

12 · · · h′
1NT

h′
21 h′

22 · · · h′
2NT

...
...

. . .
...

h′
NR1 h′

NR2 · · · h′
NRNT

⎤
⎥⎥⎥⎦ (1)

where H′ ∈ C
NR×NT and NR ≥ NT . h′

ln denotes the channel gain from the
nth transmitted antenna to the lth received antenna, l ∈ {1, 2, · · · , NR}, n ∈
{1, 2, · · · , NT }. In quasi-static environment, the channel is assumed to be flat
fading. H′ is invariant during a frame, but it changes independently from frame
to frame. h′

ln is a zero mean, independent, and identically distributed complex
Gaussian random variable with variance 1. In addition, the channel state is
assumed to be known at the receiver.

During a symbol time, the NT × 1 transmitted signal vector can be
denoted as

x′ = [x′
1, · · · , x′

n, · · · , x′
NT

]T (2)

where x′
n ∈ S is modulated from bits stream into a symbol according to the

modulation alphabet. S = A + jA is referred to as the complex alphabet of
M-QAM modulation, and

A =
[
−(

√
M − 1), · · · ,−3,−1, 1, 3, · · · , (

√
M − 1)

]
(3)

where M denotes the modulation order.
The received signal can be denoted as y′ = [y′

1, · · · , y′
l, · · · , y′

NR
]T ∈ C

NR×1,
and is given by

y′ = H′x′ + w′ (4)

where w′ = [w′
1, · · · , w′

l, · · · , w′
NR

]T ∈ C
NR×1 refers to the complex additive

white Gaussian noise (AWGN), and E
{
w′w′H

}
= σ2INR

. The σ2 is the noise
variance, and INR

signifies a NR × NR identity matrix.

3 Proposed BFG-BP Detection Algorithm

Consider the real-valued system model corresponding to (4), i.e.,

y = Hx + w (5)

where

y Δ=
[�(y′)

�(y′)

]
, H Δ=

[�(H′) −�(H′)
�(H′) �(H′)

]
, x Δ=

[�(x′)
�(x′)

]
, w Δ=

[�(w′)
�(w′)

]
. (6)
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Herein, y, H, x and w signify the real valued received signal vector, channel gain
matrix, transmitted signal vector and noise vector, respectively. For the sake of
convenience, y, x and w are rewritten as follows:

y = [y1, · · · , ynr
, · · · , y2NR

]T (7)

x = [x1, · · · , xnt
, · · · , x2NT

]T (8)

w = [w1, · · · , wnr
, · · · , w2NR

]T (9)

where nt = 1, 2, · · · , 2NT , nr = 1, 2, · · · , 2NR.
In the context of M-QAM, the real valued symbol xnt

is expanded to the bit
domain and written as

xnt
=

K−1∑
k=0

2kbk
nt

= cbnt
(10)

where K = log2(
√

M) refers to the total number of bits for each real valued
symbol, and

c = [20, 21, · · · , 2k, · · · , 2K−1] (11)

bnt
= [b(0)nt

, b(1)nt
, · · · , b(k)nt

, · · · , b(K−1)
nt

]T (12)

where bnt
can be interpreted as the ntth bitwise transmitted vector. b

(k)
nt ∈ B

represents the kth bit value from the ntth transmitted antenna. B = {1,−1}
signifies the bitwise alphabet. k = 0, 1, · · · ,K − 1.

Denote
b = [bT

1 ,bT
2 , · · · ,bT

nt
, · · · ,bT

2NT
]T (13)

as a collection of the bitwise transmitted vector. According to (8) and (10), the
transmitted signal vector x can be rewritten as

x = (I2NT
⊗ c)b. (14)

It follows from (5) and (14) that

y = H(I2NT
⊗ c)b + w = H̃b + w (15)

where H̃ = H(I2NT
⊗ c) ∈ R

(2NR)×(2KNT ) can be regarded as the equivalent
channel gain matrix.

It can be seen that the bitwise alphabet B is the same with the modulation
alphabet of BPSK. The bitwise transmitted vector b can be viewed as the signal
which is modulated by BPSK.

According to (15), the maximum a posteriori probability (MAP) detection
of b can be given by [11]

b̂(k)nt
= arg max

b
(k)
nt ∈B

p(b(k)nt
|y, H̃) (16)

where p(b(k)nt |y, H̃) denotes the posteriori probability (APP) of the b
(k)
nt . Accord-

ing to the above derivation, we develop a bitwise FG (BFG) graphic model. Its
modeling process is illustrated in Fig. 1(a).
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Based on the BFG graphic model, a novel BFG-BP detection algorithm is
proposed. Figure 1(b) and (c) briefly shows message passing of the proposed
BFG-BP, where the observation node and the bitwise variable node signify the
real valued received symbol and transmitted bit, respectively.

Fig. 1. Graphic modeling and message passing of the proposed BFG-BP

Consider the message which passes from the n
(k)
t th bitwise variable node to

the nrth observation node. It follows from (7) and (15) that

ynr
= h̃(k)

nrnt
b(k)nt

+
2NT∑

j=1,j �=nt

K−1∑
i=0,i �=k

h̃
(i)
nrjb

(i)
j + wnr

= h̃(k)
nrnt

b(k)nt
+ z(k)nrnt

(17)

where h̃
(k)
nrnt denotes the (nr, n

(k)
t )th entry of H̃, and

z(k)nrnt
=

2NT∑
j=1,j �=nt

K−1∑
i=0,i �=k

h̃
(i)
nrjb

(i)
j + wnr

(18)

represents the Gaussian approximate interference (GAI) to the bit variable b
(k)
nt ,

which is coming from the n
(k)
t transmitted bitwise node and received by the

nrth observation node. In addition, z
(k)
nrnt approximately follows the Gaussian

distribution [9], i.e., z
(k)
nrnt ∼ CN (μ

z
(k)
nrnt

, σ2

z
(k)
nrnt

), where

μ
z
(k)
nrnt

=
2NT∑

j=1,j �=nt

K−1∑
i=0,i �=k

h̃
(i)
nrjE(b(i)j ) (19)

σ2

z
(k)
nrnt

=
2NT∑

j=1,j �=nt

K−1∑
i=0,i �=k

(h̃(i)
nrj)

2
V ar(b(i)j ) + σ2

/
2. (20)

E(b(i)j ) and V ar(b(i)j ) denote the mean and variance of the bitwise variable b
(i)
j ,

respectively.
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The log-likelihood ratio (LLR) of b
(i)
j at the nrth observation node is denoted

by Λ
(k)
nrnt , and can be written as

Λ(k)
nrnt

= log
p(ynr

|H̃, b
(k)
nt = +1)

p(ynr
|H̃, b

(k)
nt = −1)

=
2

σ2

z
(k)
nrnt

h̃(k)
nrnt

(ynr
− μ

z
(k)
nrnt

). (21)

After passing the message of LLR from observation nodes to the n
(k)
t th bit-

wise variable node, the posterior probability of {b
(k)
nt = +1} is denoted by p

(k)+
nrnt ,

and computed as

p(k)+nrnt

Δ= p(k)nrnt
(b(k)nt

= +1|y) =

exp(
2NR∑

m=1,m �=nr

Λ
(k)
mnt)

1 + exp(
2NR∑

m=1,m �=nr

Λ
(k)
mnt)

. (22)

After a certain number of iterations, b
(k)
nt is detected as the one which has

the sign of the sum of LLR for all the receiving antennas, i.e.,

b̂(k)nt
= sign

(
2NR∑
nr=1

Λ(k)
nrnt

)
. (23)

4 Computational Complexity Analysis

As shown in Table 1, the computational complexity of the proposed BFG-BP
detection algorithm mainly comes from three parts. Firstly, the LLR computa-
tion at the observation node given in (21) requires roughly O(N2). Secondly,
the posterior probability computation at the bitwise variable node given in (22)
takes about O(N2). Finally, the BFG graphic modeling described in (15) requires
nearly O(N). Considering that there exists N transmitted symbols, the total
computational complexity of the proposed BFG-BP algorithm for each symbol
is O(N2 + N2 + N)/N ≈ O(N).

Table 1. The computational complexity of the proposed BFG-BP detection algorithm

Main computational part Computational complexity

LLR calculation O(N2)

APP calculation O(N2)

BFG graphic modeling O(N)
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5 Simulation Results

In the simulations, NT × NR is used to denote the number of transmitting and
receiving antennas of the Massive MIMO system, where NT and NR are var-
ied from 64 to 1024, unless otherwise stated. In addition, the detection of M-
QAM signals is investigated to examine the advantages of the proposed BFG-BP
detection algorithm, and M = 4. The average received SNR (dB) per received
antenna ranges from 0 dB to 12 dB.

5.1 BER

In this simulation, the BER performance of the proposed BFG-BP detection
algorithm is compared with that of the MMSE in [4]. Due to the high computa-
tional complexity of ML in Massive MIMO system, the single-input-single-output
(SISO) AWGN performance is employed as a lower bound to evaluate our detec-
tion performance, where the theory BER for M-QAM of SISO AWGN is given
by [12]

Ptheory = a · Q
(√

b · (SNR/log2(M))
)

(24)

where a = 2(1 − 1
/√

M)
/

log2(
√

M), b = (6log2(
√

M)
/

(M − 1)). Q (x) signi-

fies a function of x, where Q(x) = 1
2erfc( x√

2
) and erfc(·) denotes the complemen-

tary error function [12].
Figure 2(a) illustrates the BER performance of the proposed BFG-BP detec-

tion algorithm. It can be seen that when the average received SNR is 12 dB,
the proposed BFG-BP reaches an average BER of 10−5 and approximates the
BER of ML. Under the same condition, however, the MMSE only reaches an
average BER of 10−2. The BER of the proposed BFG-BP decreases rapidly and
approximates to the optimum performance of ML, and is much better than that
of MMSE, when the average received SNR increases.

Figure 2(b) shows the convergence rate of the proposed BFG-BP. In this
simulation, NT = NR = 128, the average received SNR is 12 dB. The simulation
result shows that the BER of the proposed BFG-BP converges to a stable scope
of 10−5, when the number of iteration is larger than 14. Moreover, the BER of
the proposed BFG-BP reaches the optimum performance of ML.

Figure 2(c) illustrates the BER of the proposed BFG-BP versus the number
of antennas. The average received SNR is fixed at 12 dB. NT = NR, and they
range from 64 to 512. Evidently, the simulation result shows that the BER of
the proposed BFG-BP reaches 10−5, and approximates to the optimum one of
ML, when NR and NT are larger than 64. The BER of the MMSE is roughly
10−2, and almost remains unchanged even if the number of antennas goes very
large. Therefore, the proposed BFG-BP is better for Massive MIMO system.
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Fig. 2. The BER performance of the proposed BFG-BP detection algorithm for Mas-
sive MIMO system at 4QAM. (a) The BER versus the average received SNR (b) the
convergent rate of the proposed BFG-BP, where NT = NR = 128 and the average
received SNR is fixed at 12 dB (c) the BER versus the number of antennas, where
NT = NR.

5.2 Spectral Efficiency

For VBLAST detection model, the theoretical spectral efficiency is denoted as
SEtheory and given by [13]

SEtheory = NT log2(M). (25)

In the simulations, we compare the spectral efficiency of the proposed BFG-BP
with the above mentioned theoretical spectral efficiency.

Figure 3(a) shows the normalized spectral efficiency per transmitted antenna
of the proposed BFG-BP with the average received SNR. The results indicate
that the spectral efficiency of the proposed BFG-BP increases when the average
received SNR goes large, and it converges to the theoretical spectral efficiency
when the average received SNR is larger than 10 dB. The least average received
SNR required for the proposed BFG-BP to reach the theoretical spectral effi-
ciency is around 12 dB, which is less than that required for MMSE.

Figure 3(b) depicts the normalized spectral efficiency per transmitted
antenna of the proposed BFG-BP for increasing number of antennas, where
NT = NR. It can be seen that the normalized spectral efficiency of the proposed
BFG-BP increases with the number of antennas, until it converges to the normal-
ized theory one. However, the spectral efficiency of MMSE is much lower than
that of the proposed BFG-BP, and remains invariable regardless the number
of antennas.
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Fig. 3. The normalized spectral efficiency of Massive MIMO system by means of the
proposed BFG-BP detection algorithm at 4QAM

5.3 Computational Complexity

Figure 4 illustrates the comparison of the computational complexity in the num-
ber of floating point operations (flops) among the proposed BFG-BP algorithm,
the MMSE in [4] and the ML in [4]. Both BFG-BP and MMSE have a polynomi-
ally increasing computational complexity, whereas the computational complex-
ity of ML increases exponentially with the number of antennas. Compared with
MMSE and ML, the results clearly show that the computational complexity of
the proposed BFG-BP is the lowest and is more applicable for Massive MIMO
system.
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Fig. 4. The computational complexity of the proposed BFG-BP versus the number of
antennas, where Nt = Nr.
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6 Conclusion

In this paper, an improved BFG graphic model is developed, and a new BFG-BP
detection algorithm is proposed for Massive MIMO system. The proposed BFG-
BP detection algorithm is demonstrated to be applicable for detecting QAM
signals. For Massive MIMO system, the BER performance, the spectral effi-
ciency and the computational complexity of the proposed BFG-BP detection
algorithm are better than those of the MMSE algorithm. The BER performance
of the proposed BFG-BP approximates to the optimum BER of ML. The spectral
efficiency of the proposed BFG-BP reaches the theoretical value, when the aver-
age received SNR is medium high or the number of transmitting and receiving
antennas are large. In addition, the computational complexity of is the proposed
BFG-BP is O(NT ) per symbol, which increases linearly with number of antenna.
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