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Abstract. This paper presents a power allocation algorithm for opti-
mizing network resources while considering the delay provisioning in
multi-user relay networks. Our aim is to minimize the average power
consumed by the relay nodes while satisfying the minimum Qos require-
ment of all users. Employing the convex optimization theory, we derive
an optimal power allocation policy in a quasi-closed form and give two
rules of how to select the relay nodes. Furthermore, a stochastic power
method is developed to learn the fading state of the channels and carry
out the optimal strategy immediately. Moreover, numerical results are
provided to demonstrate the performance of the proposed resource allo-
cation policies.
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1 Introduction

Nowadays, green communication is a growing research area which strives for
designing energy awareness communication systems so as to enhance energy effi-
ciency [1]. Energy awareness in wireless networks can be achieved by using low-
power relays for coverage extension, or improving wireless resource/interference
management. Among these approaches, relay based cooperative communication
requires minimum modification in the existing network infrastructure, and has
been one active research area. By exploiting spatial diversity the cooperative
communication schemes [2,3] are well recognized as an effective way to improve
the network performance (e.g. capacity, power efficiency, reliability) at the phys-
ical layer. Motivated by this, in this paper we consider an effective resource
allocation scheme to improve the network capacity for wireless multi-user relay
networks.

Many energy-efficient resource allocation schemes addressing this topic have
been published recently [4–7]. The framework employed in the cited literatures is
mainly based on the information theory. However, it is worth to mention that this
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framework is not suitable for the delay-sensitive multimedia applications, since
Shannon theory places no restriction on the delay of the transmission scheme
achieving capacity. In order to supply the multimedia applications, in this paper
we consider the QoS metric of the statistical delay, which describes a delay-
bound violation probability upper-bounded by a certain given value. And the
statistical delay related effective capacity [8] is adopted to describe the network
capacity for the multimedia applications. It is worth to mention the effective
capacity was first introduced by Wu and Negi to describe the maximal arrival
rate which can be supported under guaranteed delay QoS requirements. The
concept of effective capacity provides us with a degree of freedom to discuss the
queueing behaviors at data link layer, such as queue distribution, buffer overflow
probabilities, and delay-bound violation probabilities.

As the extended application of effective capacity for wireless networks, in this
paper we utilize the concept of effective capacity and provide a general frame-
work for optimizing network resources while considering the delay provisioning
in multi-user relay networks. The proposed policy aims to minimize the average
power consumed by the relay nodes while satisfying the rate constraints of all
users. With the effective capacity theory, the resource allocation policy is cross-
layer based and delay QoS oriented jointly. Employing the convex optimization
theory, an optimal power allocation policy is derived in a quasi-closed form and
two rules of how to select the relay nodes is derived based on the Karush-Kuhn-
Tucker (KKT) conditions. Besides, in order to expand the applied range of the
proposed scheme, we takes into account the time-varying nature of fading chan-
nels without a priori knowledge of the cumulative distribution function (cdf) of
the channels. Specifically, we model the channel condition as a stochastic process.
Based on the stochastic optimization tools [9–13], the proposed resource alloca-
tion schemes can learn the underlying channel distribution. This entails a more
systematic and powerful framework for the design and analysis of the stochastic
resource allocation schemes in wireless networks.

2 System Model and Problem Formulation

2.1 System Model

Consider a multiuser relay network, where M source nodes (Sj , j = 1, ...,M)
transmit data to their respective destination nodes (Dj , j = 1, ...,M). There
are N relay nodes (Ri, i = 1, ..., N) which are employed to assist transmissions
from source to destination nodes. Premise that there is no direct link between
the source and the destination nodes and a relay can forward data for several
users. Moreover, orthogonal transmissions are supposed among different users for
simultaneous communications by using different frequency bands. The available
channel bandwidth is equally divided into M orthogonal subchannels whose
bandwidth is denoted by B. Each user is allocated to one subchannel.

At the source, frames from upper layers are put into the queue which is
assumed to be infinite-length. Then at the physical layer, frames from the queue
are divided into bit-streams. The reverse operations are executed at the receiver.
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We assume that the fading processes of all users are jointly stationary and ergodic
with continuous joint cumulative distribution. Additionally, the wireless links are
assumed to experience different fading from one frame to another, but remain
invariant within a frame duration Tf .

Let h
Sj

Ri
and h

Dj

Ri
denote the fading channel coefficient for link Sj–Ri and

Ri–Dj , respectively. Let PSj
denote the transmit power of Sj and P

Sj

Ri
denote

the power transmitted by the relay Ri for assisting the source Sj . Let NRi
and

NDj
denote the variance of the additive white Gaussian (AWGN) at Ri and Dj .

We assume that transmission for each source-destination pair via relay nodes is
carried out in a time multiplexing manner by Amply-and-forward (AF) protocol.
Specifically, each frame duration is equally divided into N + 1 intervals. The
source Sj broadcasts its signal to all relays at the first interval, and each relay
forwards the signal to the destination Dj per interval in orders. Assuming that
maximum-ratio-combining is employed at the destination node Dj , the signal-
to-noise ratio (SNR) at Dj can be written as

γj =
N∑

i=1

P
Sj

Ri

α
Sj

Ri
P

Sj

Ri
+ β

Sj

Ri

, (1)

where

α
Sj

Ri
=

NRi

N+1

|hSj

Ri
|2PSj

, β
Sj

Ri
=

NDj

N+1

NRi

N+1

|hSj

Ri
|2|hDj

Ri
|2PSj

+
NDj

N+1

|hDj

Ri
|2

. (2)

The data rate from source Sj to destination Dj is given as

rj =
1

N + 1
log(1 + γj). (3)

The rate function rj(·) has been proven to be a concave increasing function of
P

Sj

Ri
[14]. This convexity property will help us formulate a convex optimization

for the problem under consideration as will be shown in the next subsection.

2.2 Problem Formulation

Considering the delay provisioning for delay-sensitive traffic, effective capacity is
introduced to describe the system throughput with delay QoS guarantees. The
effective capacity of link Sj–Dj is described as

Ecj = −1
θ

log(E
[
e−θjTf Brj

]
), (4)

where E[·] is the expectation operator and rj is the data rate from Sj to Dj .
Note that Ecj(·) is a monotonically decreasing function of θ, which means a
small θ corresponds to a loose violation probability requirement, while a large θ
matches a strict QoS requirement. Without loss of generality, let Tf and B be
equal to 1.
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Let āj denote the effective bandwidth of the source traffic flow of the jth user.
The QoS requirements of link Sj–Dj can be guaranteed when Ecj ≥ āj holds,
which means that for each source-destination pair, the effective capacity with
its required delay QoS exponent is greater or equal to the effective bandwidth
of the corresponding source traffic flow. With this delay QoS provisioning, our
optimization criteria aims at minimizing the average power consumed by all
the relay nodes. Mathematically, we formulate the resource allocation problem
considering QoS provisioning as

min
P

Sj
Ri

≥0

N∑

i=1

Eh

[ M∑

j=1

P
Sj

Ri

]
s.t. Ecj ≥ aj ,∀j, (5)

where Eh[·] denotes the expectation over all fading realizations. Because log(·)
is a monotonically increasing function, the constraints of (5) are equivalent to

Eh

[
e−θjrj

] − e−θjaj ≤ 0,∀j. (6)

The objective function of (5) is linear. The constraints (6) are convex since
rj(·) is convex. Therefore, the formulated power allocation problem is a convex
optimization problem. It can also be proved that the problem in (5) satisfies
Slaters constraint qualification. Thus the strong duality holds and solving the
dual problem is equivalent to solving the primal problem.

3 Power Allocation and Relay Selection Considering
QoS Provisioning

3.1 Dual Decomposition Approach

We first introduce μμμ := [μ1, μ2, ..., μM ]T associated with constraints, where μμμ �
0. The Lagrangian function by relaxing the constraints can be written as

L(PSj

Ri
,μμμ) =

N∑

i=1

Eh

[ M∑

j=1

P
Sj

Ri

]
+

M∑

j=1

μj

(
Eh[e−θjrj ] − e−θjaj

)
, (7)

The dual function is expressed as

D(μμμ) = min
P

Sj
Ri

≥0

L(PSj

Ri
,μμμ), (8)

and the dual optimization problem reads as

max
μμμ

D(μμμ) s.t. μj ≥ 0,∀j. (9)

Since D(μμμ) is convex and differentiable, the following gradient iteration algo-
rithm can be used to solve the dual problem (9)

μj [t + 1] =
[
μj [t] + s · (Eh

[
e−θjrj

] − e−θjaj
)]+

, (10)
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where t is the iteration index, s is a sufficiently small positive step size, and
[x]+ = max(0, x). The dual variables μj [t] will converge to the optimal μ∗

j as
t → ∞, and P

Sj

Ri
(μj) will also converge to the optimal P

Sj∗
Ri

(μ∗
j ) owing to the

strong duality.

3.2 Power Allocation and Relay Selection Policy with Given μμμ

Here we will derive the optimal power allocation and relay selection policy with
given μμμ. To find the optimal P

Sj

Ri
that minimizes L(PSj

Ri
,μμμ), we need to solve

min
P

Sj
Ri

≥0

M∑

j=1

Eh

[ N∑

i=1

P
Sj

Ri
+ μje

−θjrj

]
, (11)

which is equivalent to solving the following problem

min
[

N∑
i=1

P
Sj

Ri
+ μje

−θjrj

]
s.t. P

Sj

Ri
≥ 0,∀i. (12)

Clearly, (12) is a convex optimization problem. Let λ := λi ≥ 0(i = 1, ..., N) be
the Lagrange multipliers for the constraints P

Sj

Ri
≥ 0. The Lagrangian of (12) is

£(PSj

Ri
,λ) =

N∑

i=1

P
Sj

Ri
+ μje

−θjrj −
N∑

i=1

λiP
Sj

Ri
. (13)

Define

f(PSj

Ri
) =

N∑
i=1

P
Sj

Ri
+ μje

−θjrj . (14)

The Karush-Kuhn-Tucker (KKT) conditions for optimization problem (13) are
shown as

λ∗
i � 0,∀i, (15)

λ∗
i P

Sj∗
Ri

= 0,∀i,

f
′
(PSj∗

Ri
) − λ∗

i = 0,∀i.

According to the complementary slackness conditions [15] for the optimal solu-
tion P

Sj∗
Ri

and the dual variables λ∗
i , we can conclude that

{
if f

′
(PSj∗

Ri
) > 0, then P

Sj∗
Ri

= 0,

if P
Sj∗
Ri

> 0, then f
′
(PSj∗

Ri
) = 0.

(16)

From (16), we conclude that the gradient vector of f
′
(PSj

Ri
) at the optimum

should be equal to 0 when P
Sj∗
Ri

> 0. Then we can derive the following equation:

(1 +
N∑

n=1

xn

αnxn + βn
)1+τθj =

τμjθjβi

(αixi + βi)2
, (17)
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where τ = 1
N+1 , αi = α

Sj

Ri
, βi = β

Sj

Ri
, xi = P

Sj∗
Ri

. In (17), let i = 1, we get
(

1 +
N∑

n=1

xn

αnxn + βn

)1+τθj

=
τμjθjβ1

(α1x1 + β1)2
. (18)

Since xi is assumed larger than 0, we have αixi + βi > 0. Then we can get

xi =

√
βi

β1
(α1x1 + β1) − βi

αi
, i > 1. (19)

Substituting (19) into (17), we can obtain the following equation with one
variable x1

ψ1(α1x1 + β1)
2

ψ3 + ψ2(α1x1 + β1)
2

ψ3
−1 − ψ

1
ψ3
4 = 0, (20)

where

ψ1 = 1 +
N∑

i=1

1
αi

, ψ2 = −
N∑

i=1

(√
β1βi

αi

)
, ψ3 = 1 + τθj , ψ4 = τμjθjβ1.

It’s worth noting that xi is assumed positive in the foregoing derivations from
(17) to (20). But solving function (20) and (19) can not guarantee xi > 0. If
there exists xi ≤ 0, (17) does not hold and the derivation is wrong. In view of
this situation, we divide the index of relays {1, ..., N} into two subsets R1 and
R2, such that xi = 0,∀i ∈ R1, and xi > 0,∀i ∈ R2. Then, the equation in (17)
turn to the following:

(1 +
∑

n∈R2

xn

αnxn + βn
)1+τθj =

τμjθjβi

(αixi + βi)2
. (21)

Based on (21), the relay index set in the derivations from (18) to (20) is also
replaced by R2. As a result, our aim is to find out R2 efficiently. From (16), we
can infer when P

Sj∗
Ri

= 0, f
′
(PSj∗

Ri
) ≥ 0. Based on this property, the simplest

method is to enumerate all possible pairs of R1 and R2 and checking whether
the optimality condition is satisfied. That is, P

Sj∗
Ri

> 0,∀i ∈ R2 and f ′
i(P

Sj∗
Ri

) ≥
0,∀i ∈ R1. However, the time complexity of enumerating all pairs is exponential.
Next, we will improve the algorithm to get R1 and R2 in polynomial time. We
proved the following two lemmas where the proofs have been omitted for space.

Lemma 1. If 1 − τμjθj

βi
≥ 0, then we must have xi = 0.

Lemma 2. If βk ≥ βl and xk > 0, then we must have xl > 0.

From Lemma 1, we can see that the relay selection policy depends on the
channel state and the delay requirement. If the channel state is worse and the
delay requirement is loose, 1 − τμjθj

βi
turns out to be nonnegative and the relay

node i tends not to supply any power to the k-th user. Otherwise, the resource
allocation policy will allocate power for the k-th user to satisfy its stringent
QoS requirements. Through the properties Lemmas 1 and 2 imply, we give the
following algorithm to obtain the optimal power solution P

Sj∗
Ri

.
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Algorithm 1. Search for Optimal Power Control
1: Initialize R1 = R2 = ∅.
2: Compute τμjθj/βi, for i = 1, ..., N .
3: If 1 − τμjθj/βi ≥ 0, R1 = R1 ∪ {i}, else R2 = R2 ∪ {i}.

4: Set P
Sj∗
Rk

= 0 for ∀k ∈ R1.
5: Sort the indices in R2 in the decreasing order of βi, to obtain the permutation π.
6: Initialize s=1.
7: For ∀k ∈ R2, solve Eqs. (19) and (20) to get the optimal solution P

Sj∗
Rk

. If there

exists k ∈ R2, such that P
Sj∗
Rk

≤ 0, update P
Sj∗
Rπ(s)

= 0, S1 = R1 ∪ {π(s)},

R2 = R2 − {π(s)}, s = s + 1, and repeat this step.

8: Calculate f
′
k(P

Sj∗
Rk

), ∀k ∈ R1. If there exists k ∈ R1, such that f
′
k(P

Sj∗
Rk

) < 0,

update P
Sj∗
Rπ(s)

= 0, R1 = R1 ∪ {π(s)}, R2 = R2 − {π(s)}, s = s + 1, goto step 7;

else, output the resultant P
Sj∗
Ri

, ∀i.

3.3 Stochastic Resource Allocation

To implement the gradient iteration (10), we need the explicit knowledge of
fading channel cdf to evaluate the expected values. However, in some practical
mobile applications, it is infeasible to obtain the channel cdf. As it turns out,
the problem without the knowledge of channel cdf can be solved through the
stochastic optimization theory [10]. By this theory, Eh is dropped from (10) and
a stochastic gradient iteration algorithm based on per slot fading realization is
put forward as follows:

μj [t + 1] =
[
μj [t] + s · (

e−θjrj − e−θjaj
)]+

, (22)

where t is the iteration index and s is a positive step-size. It only requires
the fading state of the channels at the current iteration, which can be easily
measured.

4 Numerical Results

In this section, we provide some numerical results to evaluate the performance
of the proposed power allocation policy. Throughout our simulation, we consider
a wireless relay network with five users and three relays distributed in a two-
dimensional region. The relays are fixed at coordinates (3,1), (3,2) and (3,3). The
source and destination nodes are deployed at the lines (0,0)–(0,4) and (6,0)–(6,4),
respectively. The average SNR for the link between nodes i and j is given by
γij = γ̄

((xi−xj)2+(yi−yj)2)
n
2

where the reference SNR γ̄ is 10 dBW and the loss

exponent n is 3.6. The channel fading processes are generated from quasi-static
frequency-selective Rayleigh fading channels with γij . The variances of AWGN
NRi

and NDj
are assumed to be 1. The transmit power PSj

, j = 1, ..., 5, are
chosen to be 1 W. The unit for the power is Watt in our simulation.
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On the premise that the channel fading cdf was unknown in the simulation,
the proposed stochastic scheme was used to learn the time varying channel states
to approach the optimal resource allocation policy. Figure 1 shows the evolution
of Lagrange multiplier μ2 of each iteration when āj = 0.1 and θj = 0.1. The curve
verifies the stochastic convergence of the iterations algorithm, and we can observe
that the Lagrange multiplier μ2 stochastically converges to its corresponding
optimal value μ∗

2 = 0.5987. Note that due to the dynamics of per slot fading
realization, the value of μ2 fluctuates around its optimal value within a small
neighborhood proportional to the stepsize s.

Fig. 1. Stochastic convergence of Lagrange multiplier μ2

To gauge the performance of the proposed algorithm, we compare it with two
other power allocation policies. The first scheme named constant power policy,
in which each relay use the same transmit-power to transmit signals from source
to destination. The second scheme asks to minimize the whole power cost while
satisfying a minimum ergodic rate constraints of each source-destination pair,
named rate-based policy. The optimal policy proposed in (10), stochastic policy
proposed in (22), constant power policy and rate-based policy are compared in
terms of the minimum average sum power while satisfying the same delay QoS
requirements. We ran the four policy with the constrains of effective capacity
āj = 0.1 and āj = 0.5, j = 1, ..., 5. Numerical results are shown in Fig. 2(a)
and (b), respectively. Notice that the optimal policy demonstrates the same
performance with the stochastic one, which proves that the proposed stochastic
scheme can approach the optimal policy via learn the channel fading knowledge
on the fly. It is shown that the allocated power of the proposed policy increases
with the QoS exponent θ. This illustrates that more power must be consumed in
order to guarantee the more strict QoS requirements. Also the proposed policy
outperforms the other two policies obviously in power saving. Additionally, the
difference value between the two policies increases with the delay QoS exponents.
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Fig. 2. The power allocation policy when āj = 0.1 (a) and āj = 0.5 (b)

5 Conclusion

We have formulated a convex optimization framework for resource allocation
by taking the delay QoS requirement into account in wireless relay networks.
Based on the framework, we have proposed a power control policy with the
objective of minimizing the overall power consumption while fulfilling the mini-
mum Qos requirement. By using the dual decomposition method, we solved the
optimization problem and derived a optimal power control policy. Furthermore,
we proposed a stochastic method that can learn the fading state of the channels
and carry out the optimal strategy immediately. It has been shown that our
proposed policy exhibits excellent performance of power saving compared with
constant power policy and rate-based policy.
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