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Abstract. In this paper, we consider a dirty Gaussian two-way relay
channel, where the two user nodes exchange messages with the help of a
relay node. The three nodes experience two independent additive inter-
ferences which are assumed to be known at some nodes. We consider two
cases: (1) the two user nodes know each of the two interferences respec-
tively; (2) the relay node knows both the interferences. With nested lat-
tice coding and compute-and-forward relaying, we derive achievable rate
regions for the above two cases. The achievable rate regions are shown
to be within constant bits from the cut-set outer bound for all channel
parameters regardless of the interferences. Comparing the two achievable
rate regions of the above two cases, it is shown that more information
about the interferences the relay node knows more interferences will be
canceled, larger achievable rate region can be achieved.

Keywords: Two-way relay channel · Dirty paper channel · Nested
lattice coding · Compute-and-forward

1 Introduction

The channel with channel state information causally known at the source node
was first considered by Shannon [1]. For the channel with state information non-
causally known at the encoder, Gel’fand and Pinsker [2] derived the capacity for
general discrete memoryless channels and Costa [3] derived the capacity of the
Gaussian dirty channel with dirty-paper coding.

The two-way relay channel in which two users wish to exchange messages
with the help of a third relay node is a practical channel model for wireless
communication systems. A number of coding schemes and relaying strategies
have been proposed for the two-way relay channels. Lattice coding which has
been shown to be good for almost everything [4] was applied to two-way relay
channels during recent years and was demonstrated to be capacity-approaching
[5–9]. Nam et al. [6] proposed a scheme based on nested lattice codes formed from
a lattice chain. They exploited the structural gain of computation coding and
derived the capacity region for the two-way relay channel to with 1/2 bit. In [7],
a lattice-based achievability strategy was proposed to derive a symmetric rate
which is within 1

2 log(3) bits of the capacity for the two-way two-relay channel.
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For some certain classes of channels with side information, Zamir et al. [9]
used lattice codes to derive the capacity of these channels. The nested approach
of [9] for the dirty-paper channels is extended to multi-user dirty-paper channels,
e.g. the authors in [10] showed that lattice-based binning seemed to be necessary
to achieve capacity of the dirty multiple access channel (MAC). In [11], Song
et al. studied the two-hop Gaussian relay channel with a source, a relay and a
destination. The destination experienced an additive interference which is known
to the source non-causally. They proposed a new achievable scheme based on
nested lattice code and decode-and-forward (DF) relaying. This strategy used
the structure provided by nested lattice codes to cancel part of the interference
at the source and achieved a rate to within 1/2 bit of the clean channel.

In this paper, we consider a Gaussian two-way relay channel with channel
state information. The two user nodes (node 1 and node 2) exchange messages
with the help of a relay node (node 3). The three nodes experience two inde-
pendent additive Gaussian interferences S1 and S2 which can be viewed as the
signals transmitted from the primary users in cognitive radio systems. We assume
that only part of the nodes in the two-way relay channel are capable of acquiring
some knowledge about the interferences S1 and S2. Thus, the state-dependent
two-way relay channel studied in this paper can be viewed as a secondary relay
communication with some cognitive nodes. The nodes knowing the interference
S1 or S2 may adapt their coding schemes to mitigate the interferences caused by
the primary communication. We consider the following two cases: (1) user node 1
and user node 2 know the interferences S1 and S2 respectively; (2) the relay node
knows both interferences S1 and S2. We generalize the lattice coding schemes
used in [6,11], and derive corresponding inner bounds for the capacity regions
of the above two cases based on compute-and-forward relaying at the relay node
and nested lattice coding with interferences pre-cancellation at the nodes which
know the interference. With these achievable schemes, the achievable rate regions
derived for the above two cases are within constant bits from the cut-set outer
bounds for all channel parameters regardless of the interferences.

2 Channel Model and Lattice Coding Preliminaries

2.1 Channel Model

As shown in Fig. 1, we consider a two-way relay channel with interferences. We
assume that there is no direct path between the two user nodes. The channel is
corrupted by two independent additive Gaussian interferences S1 and S2 known
non-causally at some of the nodes. The message wi ∈ {1, 2, ..., 2nRi} is uniformly
distributed over the message set Wi =

{
1, 2, ..., 2nRi

}
, where i ∈ {1, 2}, n is the

number of channel uses, and Ri denotes the rate of message wi. The messages w1

and w2 are independent of each other. We let Xn
i = (Xi (1) ,Xi (2) , ...,Xi (n))

where Xi (k) denotes the input from node i at channel use k (and similarly for
the channel outputs Yn

i of node i) where i ∈ {1, 2, 3}. Node i transmits Xi (k)
at time k to the relay through the channel specified by

Y3(k) = X1(k) + X2(k) + S1(k) + S2(k) + Z3(k) (1)
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where Z3(k) is an independent identically distributed (i.i.d.) Gaussian random
variable with zero mean and variance 1, S1 and S2 are the two additive i.i.d.
Gaussian interferences with zero mean and variance Q1 and Q2 respectively.
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Fig. 1. Dirty two-way relay channel

The relay node 3 transmits Xi(k) to user node 1 and user node 2 through
the channel specified by

Yi(k) = X3(k) + S1(k) + S2(k) + Zi(k) (2)

where Zi(k) is an additive white Gaussian noise with zero mean and variance 1.
For the first case when user node 1 and user node 2 know the channel state

information non-causally, a (2nR1 , 2nR2 , n)-code consists of message wi uniformly
distributed over the message set Wi =

{
1, 2, ..., 2nRi

}
; two encoding functions

at node 1 and node 2

fn
i : {1, 2, ..., 2nRi} × Sn

i → R
n (3)

such that 1
n

∑
k=1 E(x2

i,k) ≤ Pi, where i = 1, 2; a series of encoding func-

tions {f
(k)
3 }n

k=1 at the relay node 3 such that X3(k) = f
(k)
3

(
Yk−1

3

)
and

1
n

∑n
k=1 (X3(k))2 ≤ P3; decoding functions at node 1 and node 2

gn
i : Yn

i × Sn
i × Wi → {1, 2, ..., 2nRī} (4)

where, i, ī ∈ {1, 2}, i �= ī.
The definition of (2nR1 , 2nR2 , n)-code for the second case when the relay node

knows both S1 and S2 is similar to that for the first case, except that the encoding
functions and decoding functions at node 1 and node 2 should be replaced by
fn

i : {1, 2, ..., 2nRi} → R
n and gn

i : Yn
i × Wi → {1, 2, ..., 2nRī}, i, ī ∈ {1, 2}, i �= ī,

respectively, and encoding functions at the relay node should be replaced by
X3(k) = f

(k)
3

(
Yk−1

3 ,Sn
1 ,Sn

2

)
.

The decoding error probability is defined as

Pn,e =
1

2n(R1+R2)

∑

w1∈W1,w2∈W2
Pr ((w1, w2) �= (ŵ1, ŵ2) | (w1, w2) was sent)
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For any ε > 0 and sufficiently large n, if there exists (2nR1 , 2nR2 , n)-code
such that Pn,e < ε, the rate pair (R1, R2) is said to be achievable. The capacity
region for the dirty two-way relay channel is defined as the supremum of the set
of all achievable rate pairs.

2.2 Lattice Coding Preliminaries

We briefly outline the notations and definitions for nested lattice codes. For
details of the lattice coding, please refer to [4,12] and the references therein.

An n-dimensional lattice Λ is a discrete group in the Euclidian space R
n

which is closed with respect to the addition and reflection operations. The lattice
is specified by Λ = {λ = G · i : i ∈ Z

n}, where G is a n × n real valued matrix.
The nearest neighbor quantizer QΛ(·) is defined by QΛ (x) = arg min

λ∈Λ
‖x − λ‖,

where ‖·‖ denotes Euclidian norm. The fundamental Voronoi region of Λ is
defined as V (Λ) = {x ∈ R

n : QΛ (x) = 0}. The modulo lattice operation with
respect to Λ is defined as xmod Λ = x−QΛ (x). The second moment of a lattice
Λ is given by σ2 (Λ) = 1

V · 1
n

∫
V ‖x‖2dx, and the normalized second moment of

lattice Λ is given by G (Λ) = σ2(Λ)

V
2
n

, where V is the volume of the Voronoi region.

A lattice Λ is said to be Rogers-good if limn→∞ G (Λ) = 1
2πe and Poltyrev-

good if Pr{Z /∈ V} � e−nEp(μ) for any Z ∈ N (0, σ2I), where μ = (Vol(V))2/n

2πeσ2 is
the volume-noise ratio.

A nested lattice code is defined in terms of two n-dimensional lattices Λ and
Λc such that Λ ⊆ Λc with fundamental regions V, Vc of volumes V := Vol (V),
Vc := Vol (Vc) respectively. Lattice Λ is called the coarse lattice which is a sub-
lattice of the fine lattice Λc. The set CΛc,Λ = {Λc ∩ V} can be employed as the
codebook using Λc as codewords and the Voronoi region V of Λ as a shaping
region. The coding rate R is defined as R = 1

n log |CΛc,Λ| = 1
n log V

Vc
.

3 Main Results

3.1 Achievable Rate Region When the Two User Nodes Know S1

and S2 Respectively

Since the two user nodes 1 and 2 know only part of the interferences, each
user node pre-cancels part of the interferences according to their own knowledge
about the interferences using the nested lattice codes. The relay node decodes
and forwards the function of the codewords transmitted from the two user nodes
exploiting the structure property of the nested lattice codes. The two user nodes
decode the message from the other node using their own messages as side infor-
mation. Combining the structured interference pre-cancelation technique in [11]
and the compute-and-forward relaying used to derive the achievable rate region
for the two-way relay channel by Nam in [6], an achievable rate region is derived
for the dirty two-way relay channel studied in this paper as shown in the follow-
ing theorem.



Capacity Region of the Dirty Two-Way Relay Channel 309

Theorem 1. For the dirty Gaussian two-way relay channel with partial channel
state information known at the user nodes as shown in Fig. 1, the rate region
which is the closure of the set of all points (R1, R2) satisfying

R1 < min

{[
1
2 log

(
P1

P1+P2
P1+P2+1+

P2
P2+1

)]+

,

[
1
2 log

(
P3

2P3
2P3+1+

P3
P3+1

)]+
}

R2 < min

{[
1
2 log

(
P2

P1+P2
P1+P2+1+

P2
P2+1

)]+

,

[
1
2 log

(
P3

2P3
2P3+1+

P3
P3+1

)]+
} (5)

is achievable and is within 1 bit from the cut-set outer bound, where [x]+ �
max {x, 0}.
Remark 1. Compared with the achievable rate region of the two-way relay chan-
nel with no interference considered in [6] which is shown to be within 1/2 bit
from the outer bound, the achievable rate region of the two-way relay channel
with two additional interferences derived in this paper is within 1 bit from the
outer bound. This 1/2 bit larger gap is due to the fact that the two user nodes
know only part of the interference.

Proof. Without loss of generality, we assume P1 ≥ P2. We will prove the theorem
in two cases: (1) P3 ≥ P2; (2) P2 ≥ P3.

(1) the first case: P3 ≥ P2

For the first case, let us consider a good nested lattice chain Λ1 ⊂ Λ2 ⊂ Λc ⊂ Λq

as in Sect. 2.2, where the second moment of each lattice is constrained to be
σ2 (Λ1) = min (P1, P3), σ2 (Λ2) = P2, σ2 (Λc) = σ2

c and σ2 (Λq) = σ2
q . The

lattices Λ1, Λ2 and Λq are both Rogers good and Poltyrev good, while Λc is
Poltyrev good. The proof in [13] ensures the existence of such lattice chain. The
Voronoi regions of the lattices Λ1, Λ2, Λc, Λq are denoted by V1, V2, Vc, Vq of
volumes V1, V2, Vc, Vq respectively.

Encoding at the User Nodes. We use C1 = {Λc ∩ V1} for node 1, C2 =
{Λc ∩ V2} for node 2. For node i, each message wi ∈ {

1, 2, ..., 2nRi
}

is one-to-
one mapped to the lattice point ti ∈ Ci, where Ri = 1

n log( Vi

Vc
). We also define two

sets Cq,1 = {Λq ∩ V1} and Cq,2 = {Λq ∩ V2} for quantizing the interferences at
node 1 and node 2 with quantization rates Rq,1 = 1

n log(V1
Vq

) and Rq,2 = 1
n log(V2

Vq
)

respectively. To transmit a message wi, node i chooses ti associated with the
message and sends

Xi = (Ti − αSi + Ui) mod Λi

where Ti = (ti−QΛq
(αiSi+Uqi))mod Λi ∈ Cq,i, Ui is the channel coding dither

uniformly distributed over Vi and is known to the relay node, Uqi is the quan-
tization dither uniformly distributed over Vq. From the dithered quantization
property, Xi is uniformly distributed over Vi and is independent of Ti.
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Encoding at the Relay Nodes. The relay receives Y3 = X1+X2+S1+S2+Z3

and computes

Ỹ3 = (αY3 − U1 − U2) mod Λ1

= [T1 + T2 − QΛ2 (T2 − αS2 + U2) − (1 − α) (X1 + X2) + αZ3] mod Λ1

= [T3 − (1 − α) (X1 + X2) + αZ3] mod Λ1

where T3 = (T1+T2−QΛ2(T2−αS2+U2))mod Λ1. Since Λ1 ⊂ Λ2 ⊂ Λc ⊂ Λq,
it follows that T3 ∈ Cq1. Using the crypto-lemma, T3 is uniformly distributed
over Cq1 and independent of − (1 − α) (X1 + X2) and αZ3 which can be seen
as two independent noise terms. According to Theorem 3 in [6], choosing α =
min(P1,P3)+P2

min(P1,P3)+P2+1 , the relay can decode T̂3 successfully with the error probability

Pr{T̂3 �= T3} vanishes as n → ∞ if

Rq1 <
[
1
2 log (min (P1, P3)/(min (P1, P3) + P2) + min (P1, P3))

]+

Rq2 <
[
1
2 log (P2/(min (P1, P3) + P2) + P2)

]+ (6)

Following that Rqi = σ2(Λi)
σ2(Λq)

, the following inequality must be satisfied.

σ2
q = σ2 (Λq) > min (P1, P3) + P2/(min (P1, P3) + P2 + 1) (7)

The relay transmits X3 = (T̂3 +U3)mod Λ1 where U3 is the channel coding
dither known at the user nodes 1 and 2. Again, according to the crypto-lemma,
X3 is uniformly distributed over V1 and independent of T̂3.

Decoding at the User Node 1. The user node 1 estimates the message ŵ2

by its received vector Y1 = X3 + S1 + S2 + Z1.
Since the user node 1 has known the interference S1 in advance, it subtracts

it from Y1 to derive Y′
1 = X3 + S2 + Z1. It then computes

Ỹ1 = (α2Y′
1 + Uq2 − U3 − T1) mod Λ2

= [(T3 + U3) mod Λ1 − (1 − α2)X3

+α2 (S2 + Z1) + Uq2 − U3 − T1]mod Λ2
(a)
= [T2 − (1 − α2)X3 + α2S2 + α2Z1 + Uq2 ] mod Λ2

= t2 + (α2S2 + Uq2) mod Λq − (1 − α2)X3 + α2Z1 mod Λ2

(8)

where (a) follows from the facts that T3 = (T1 + T2 − QΛ2(T2 − αS2 +
U2))mod Λ1 and the mod-lattice operation (xmod Λ1) mod Λ2 = xmod Λ2

resulting from the fact Λ1 ⊂ Λ2.
From (8), it is easy to find that (α2S2 + Uq2) mod Λq is a random vari-

able uniformly distributed over Vq and independent of all the others. Thus,
(α2S2 + Uq2) mod Λq, − (1 − α2)X3 and α2Z1 can be seen as three independent
noise terms with variance σ2

q , (1 − α)2 min (P1, P3) and α2
2 respectively. Choosing

α2 = min(P1,P3)
min(P1,P3)+1 , node 1 decodes t2 by lattice decoding t̂2 = QΛc

(Ỹ1) where
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QΛc
(·) denotes the nearest neighbor lattice quantizer associated with Λc. The

error probability Pr
{
t̂2 �= t2

}
vanishes as n → ∞, if

R2 <
1
2

log
(

P2/

(
σ2

q +
min (P1, P3)

min (P1, P3) + 1

))
(9)

Considering the inequality (7), we have

R2 <
1
2

log
(

P2/

(
min (P1, P3) + P2

min (P1, P3) + P2 + 1
+

min (P1, P3)
min (P1, P3) + 1

))
(10)

Decoding at the User Node 2. The user node 2 estimates the message ŵ1

by its received vector Y2. Taking similar steps as decoding at the user node 1,
we can derive the following achievable rate of the message w1

R1 <
1
2

log
(

min (P1, P3)/
(

min (P1, P3) + P2

min (P1, P3) + P2 + 1
+

min (P1, P3)
min (P1, P3) + 1

))
(11)

(2) the second case P2 ≥ P3,
For the case P2 ≥ P3, we let Λ1 = Λ2 of the nested lattice chain Λ1 ⊂ Λ2 ⊂
Λc ⊂ Λq used in the first case. The second moments of both the two lattices Λ1

and Λ2 are restricted to be P3. In this case, all the three nodes will transmit
with the same average power P3. Taking the same encoding and decoding steps
as in the first case, we can derive the following achievable rate pair (R1, R2).

R1 = R2 <
1
2

log
(

P3/

(
2P3

2P3 + 1
+

P3

P3 + 1

))
(12)

Therefore, according to Eqs. (10)–(12), we conclude that the following rate
pair (R1, R2) is achievable

R1 < min

{[
1
2 log

(
P1

P1+P2
P1+P2+1+

P2
P2+1

)]+

,

[
1
2 log

(
P3

2P3
2P3+1+

P3
P3+1

)]+
}

R2 < min

{[
1
2 log

(
P2

P1+P2
P1+P2+1+

P1
P1+1

)]+

,

[
1
2 log

(
P3

2P3
2P3+1+

P3
P3+1

)]+
} (13)

Next, we will show that the above achievable rate pair is within 1 bit from
the cut-set outer bound which is given by

R1 ≤ min
{

1
2 log (1 + P1) , 1

2 log (1 + P3)
}

R2 ≤ min
{

1
2 log (1 + P2) , 1

2 log (1 + P3)
} (14)

Considering (13) and (14), we can conclude that

1
2 log

(
P1

P1+P2
P1+P2+1+

P2
P2+1

)
> 1

2 log
(

P1
P1+P2

P1+P2+1+
P1+P2

P1+P2+1

)

= 1
2 log

(
P1

P1+P2
+ P1

)
− 1

2

> 1
2 log (1 + P1) − 1

(15)
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where the last inequality is due to the fact 1
2 log

(
P1

P1+P2
+ P1

)
> 1

2 log (1 + P1)− 1
2

which has been shown in [6]. Similarly, we have

1
2

log

(
P2

P1+P2
P1+P2+1 + P1

P1+1

)

>
1
2

log (1 + P2) − 1 (16)

1
2

log

(
P3

2P3
2P3+1 + P3

P3+1

)

>
1
2

log (1 + P3) − 1 (17)

The three inequalities (15)–(17) show that the achievable rate region derived in
this paper is within 1 bit from the cut-set outer bound.

3.2 Achievable Rate Region When Relay Knows Both S1 and S2

When the relay node knows both interferences S1 and S2, it can subtract the two
interferences before decoding since the interferences are additive. Therefore, the
uplink (the channel from the two user nodes to the relay node) can be viewed
as a clean channel. The downlink (the channel from the relay node to the two
user nodes), however, is dirty. The relay node helps to eliminate the interferences
with dirty paper coding.

Theorem 2. For the dirty Gaussian two-way relay channel, when relay node 3
knows both the interferences S1 and S2, the rate region which is the closure of
the set of all points (R1, R2) satisfying

R1 < min
{[

1
2 log

(
P1

P1+P2
+ P1

)]+
,
[
1
2 log (1 + P3)

]+
}

R2 < min
{[

1
2 log

(
P2

P1+P2
+ P2

)]+
,
[
1
2 log (1 + P3)

]+
} (18)

is achievable and is within 1/2 bit from the cut-set outer bound, where [x]+ �
max {x, 0}.
Remark 2. The achievable rate region derived in Theorem 3 is the same as that
derived in the work of Nam [6] in which the two-way relay channel is not cor-
rupted by extra interferences. This means that the interferences can be elimi-
nated completely by the relay node with dirty paper coding when the relay node
knows all the interferences in advance.

Proof. Again, without loss of generality, we assume P1 ≥ P2 and construct a
good nested lattice chain Λ1 ⊂ Λ2 ⊂ Λc ⊂ Λq where the second moment of each
lattice is constrained to be σ2 (Λ1) = min (P1, P3), σ2 (Λ2) = P2, σ2 (Λc) = σ2

c

and σ2 (Λq) = σ2
q , Λ1, Λ2 and Λq are both Rogers good and Poltyrev good while

Λc is Poltyrev good. Two codebooks C1 = {Λc ∩ V (Λ1)} and C2 = {Λc ∩ V (Λ2)}
are generated.

Since the interferences S1 and S2 are additive and known to the relay node,
they can be subtracted from the signals received at the relay node. Therefore, the
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uplink channel can be viewed as a clean channel. Following the same steps in [6],
the relay node can estimate T̂3 = T3 = (t1 + t2 − QΛ2 (t2 + U2)) mod Λ1 with
error probability approaching 0 if the rate pair (R1, R2) satisfies (19), where t1 ∈
C1 and t2 ∈ C2 are the lattice points associated with the messages transmitted
by user node 1 and user node 2 respectively.

R1 < 1
2 log

(
P1

P1+P2
+ P1

)

R2 < 1
2 log

(
P2

P1+P2
+ P2

) (19)

Having successfully decoded T̂3, the relay node sends T̂3 to user node 1
and user node 2 using Gaussian codebooks. Again, we assume P1 ≥ P2, thus
R1 ≥ R2 for the uplink. Fix a measure PU,S1,S2 . Generate 2n(R1+Rs) i.i.d.
codewords {un(t3, ts)} each with i.i.d. components drawn according to PU .
Randomly and uniformly distribute 2n(R1+Rs) codewords {un(t3, ts)} into 2nR1

bins each with 2nRs codewords. We assume one-to-one correspondence between
T̂3 ∈ C1 and the bin index t3 and denote it as t3(T̂3). It is easy to verify
t3(T̂3) is uniformly distributed over {1, 2, ..., 2nR1} since T̂3 is uniformly distrib-
uted over C1. Knowing the interferences non-causally, the relay node searches
the smallest t̃s ∈ {1, 2, ..., 2nRs} from the bin indexed by t3(T̂3) such that
un(t3(T̂3), t̃s) is jointly typical with sn

1 and sn
2 . By the covering lemma [14],

if Rs > I(U ;S1, S2), there exists at least one such codeword. The relay node
then transmits xn

3 = un(t3(T̂3), t̃s) − αr(sn
1 + sn

2 ).
User node 1 estimates T̂3 according to its received vector Y1. It chooses one

unique codeword un(t3(T̂3,1), t̃s) ∈ Cr,1 such that un(t3(T̂3,1), t̃s) and Y1 are
jointly typical, where

Cr,1 = {un(t3(T), ts) : T = t1 + t′
2 − QΛ2(t2 + U2), t′

2 ∈ C2, ts ∈ [1 : 2nRs ]}
t1 is the lattice point associated with the message transmitted by itself. Using
t1 as side information, user node 1 estimates the message of user node 2 as

t̂2 = (T̂3,1 − t1)mod Λ2 (20)

If and only if T̂3,1 = T̂3, the probability that user node 1 successfully estimates
the message t̂2 = t2 from user node 2 tends to 1. Notice that the cardinality
of Cr,1 is 2n(R2+Rs). Thus, from the argument of GP-coding [2], the probability
that T̂3,1 �= T̂3 tends to 0 as n → ∞ if

R2 < I(U ;Y1) − I(U ;S1, S2) (21)

By dirty paper coding, we choose αr = P3
P3+1 , the decoding error probability at

user node 1 approaches 0 if

R2 <
1
2

log (1 + P3) (22)

Taking similar steps, user node 2 can successfully decode message of user
node 1 with decoding error probability approaching 0 if

R1 <
1
2

log (1 + P3) (23)
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Following (19), (22) and (23), the following rate pair is achievable

R1 < min
{

1
2 log

(
P1

P1+P2
+ P1

)+

, 1
2 log(1 + P3)

}

R2 < min
{

1
2 log

(
P2

P1+P2
+ P2

)+

, 1
2 log(1 + P3)

} (24)

The achievable rate region derived in (24) is the same as that derived in
[6] in which the two-way relay channel is not corrupted by extra interferences.
Therefore, the rate region derived by (24) is within 1/2 bit from the cut-set outer
bound.

4 Conclusions

In this paper, we consider a Gaussian dirty two-way relay channel with addi-
tive interferences known partially at some of the nodes. Achievable rate regions
are derived using nested lattice coding and compute-and-forward relaying for
two cases. The nodes which know the interference in advance make use of the
structure of the nested lattice codes to pre-cancel part of the interferences. At
the relay node, structural gain of computation coding is exploited using nested
lattice codes. With the schemes used in this paper, we show that the achievable
rate regions are within constant bits from the cut-set outer bound regardless of
the interferences.
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