
Two Degree Forest Based LT Codes
with Feedback

Liang Liu1,2,3,4(&) and Feng Liu1,2,3,4

1 School of Electronic and Engineering, Beihang University, Beijing, China
{Liuliang1945,liuf}@buaa.edu.cn

2 The Collaborative Innovation Center of Geospatial Technology, Wuhan, China
3 Beijing Key Laboratory for Network-Based Cooperative Air Traffic

Management (No. BZ0272), Beijing, China
4 Beijing Laboratory for General Aviation Technology,

Beijing, People’s Republic of China

Abstract. The performance of belief propagation (BP) decoding algorithm for
LT codes is significantly deteriorated, as the data-block length decreases, since
the randomly encoding of LT codes causes lots of wasted output symbols, which
is helpless for decoding. To solve this problem, this paper provides two degree
forest based LT codes in order to help the sender to send badly needed symbols
to accelerate decoding throughout entire receiving process. Through gathering
two degree output symbols into separable trees, the decoder can easily get and
feedback the indexes of the badly needed input symbols. Simulation results
show that, in the short data-block length case, two degree forest based LT codes
achieve much lower coding overhead, consume much smaller storage resources,
and need less feedback opportunities compared with current LT codes
algorithms.

Keywords: LT codes � Two degree forest � Feedback channel � Robust soliton
distribution

1 Introduction

LT codes are the simplest kind of fountain codes [1] with capacity achieving perfor-
mance on erasure channels [1–3]. The biggest advantage of LT codes is that it is
simultaneously near optimal for different erasure channels with time varying or
unknown erasure rate [1]. Moreover, due to the character of sparsity for encoding [1],
the decoder can achieve linear decoding complex, according to a belief propagation
(BP) decoding algorithm. In addition, only one single bit feedback is needed from the
decoder to the sender during entire transmission process. Due to above advantages, LT
codes are widely used in different scenarios of communications.

However, it should not be ignored that the performance of LT codes is compro-
mised considerably when the data block length is relatively small [1, 4, 5]. Such
situation happens frequently. For one thing, in some applications, it is not needed to
transmit large amount of data bits. For another, in some energy limited equips, such as

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
Q. Chen et al. (Eds.): ChinaCom 2016, Part I, LNICST 209, pp. 232–241, 2018.
DOI: 10.1007/978-3-319-66625-9_23

small wireless sensors [9] and satellites in low earth orbits [10], there are not sufficient
storage resource to buffer large amount of data bits. Hence, it is needed to enhance the
performance of LT code when data block length is relatively small.

To enhance the performance of LT code with relatively small data block length,
former researchers have proposed some improvements based on limited feedback. In
the work by [6], the decoder transmits feedback message about the number of original
symbols that are already recovered, so that the sender can shift the degree distribution
of LT code to accelerate data recovery, such method is called shifted LT code or SLT
code for short. However, the performance of SLT code is limited due to following two
aspects. For one thing, although average degree increases when some original symbols
are recovered at decoder, it still has large probability that newly generated output
symbols are useless for decoder. For another, as average degree increases, the proba-
bility of degree one decreases, which is negative for traditional BP decoding algorithm.

To better accelerate the decoding process, LT codes with alternating feedbacks
(LT-AF codes) is proposed [7, 8]. In this algorithm, not only the currently decoded
number of original symbols, but also the needed input symbol index is feedback from
the decoder, to further enhance decoding process. The second kind of feedback is
useful, if some input symbol is badly needed for the decoder. To better figure out the
suitable input symbol index, three different principles are proposed is [8]. However, in
[7, 8], the feedback message about index of input symbol is only used when the number
of output symbols received by decoder is larger than the number of original symbols,
which is negative for decoding process. Since traditional decoding algorithm can only
recover a small fraction of input symbols, when number of received output symbols is
less than the number of input symbols [1], then it is inevitable that the storage costs for
decoder is huge. Moreover, it is reasonable for the decoder to obtain the badly needed
input symbols in the whole receiving and decoding process.

This paper proposes the two degree forest based LT codes (TBLT codes) with
feedback to enhance the performance of LT codes with relatively small data block
length. TBLE codes work as follows. First, in order to provide appropriate feedback for
indexes of input symbols, the two degree forest (TDF), which consists of output
symbols with two adjacent input symbols, is formulated and maintained throughout
entire decoding process. The feedback message about the badly needed index of input
symbol is sent to the sender, as long as the size of some two degree tree (TDT) is larger
than certain threshold. If the badly needed input symbol arrives at destination, all input
symbols, which is included in that TDT, can be recovered, and the iterative decoding
algorithm can be accelerated to recovery more input symbols. Notice that, although the
idea of two degree chains is mentioned in [8] as one kind of principle to get the indexes
of needed input symbols, which is similar to the two degree trees in our methods, the
function of two degree forest is not fully explored and analyzed in [8].

Simulation results show that TBLT codes have following advantages. First, the
average coding overhead, which is defined as proportion of additional data bits needed
for transmission, can be reduced by about 40%, compared with traditional LT codes
and SLT codes [6]. Second, the peak value of restore cost during entire decoding

Two Degree Forest Based LT Codes with Feedback 233

process can be reduced by about 35%. Finally, compared with SLT codes, TBLT codes
require much less feedback times.

The paper is organized as follows. Section 2 presents basic knowledge about LT
codes. Section 3 presents the design of two degree forest based LT codes. The simu-
lation results with comparison are given in Sect. 4. Section 5 concludes the paper.

2 Preliminary

First, for simplicity without losing generalization, assume that all input and output
symbols are binary symbols, which may include thousands of bits. The encoding and
decoding procedures of LT codes are as follows.

LT Encoding: Let k be the number of input symbols for encoding. Let
U = {u1, …, uk} be the set of input symbols. First, an output symbol degree d is
chosen from the Robust-Soliton distribution [1], M = {l1, l2, …, lk}, where li is the
probability that d = i, such that

Pk
i¼1 li ¼ 1. Next, uniformly and randomly chose

d input symbols. Then the output symbol v is generated through XORing those d input
symbols. Those d input symbols refer to the neighbors of v. The encoding procedure
repeats until the single-bit feedback comes. The RS distribution is obtained by com-
bining ideal-soliton (IS) distribution qi and distribution s given by

qi ¼ 1=k i ¼ 1
1=iði� 1Þ i ¼ 2; . . .; k

�
ð1Þ

and

si ¼
R=ik i ¼ 1; . . .; k=R� 1
R=k ln R=dð Þ i ¼ k=R
0 i ¼ k=Rþ 1; . . .; k

8
<
:

respectively, where R ¼ c ln k=dð Þ ffiffiffi
k

p
, d and c are two tunable parameters. Then, RS

distribution is obtained through

li ¼
qi þ si

b
; i ¼ 1; . . .; k; ð2Þ

where, b ¼ Pk
i¼1 qi þ si:

LT Decoding: Currently, the basic decoding algorithm for LT codes is the belief
propagation, which works iteratively as follows. When decoder finds an output symbol,
such that the value of all but one of its neighboring input is known, the unknown input
symbol can be obtained by bitwise XOR operations and removes all edges incident to
that output symbol. This process is repeated until no such output symbols exist. Notice

234 L. Liu and F. Liu

that the set of output symbols that are reduced to degree one is called ripple, which is
critical for LT decoding. If the ripple is empty, the decoding stops and waits for new
output symbols of degree one to proceed the decoding. If all k input symbols are
recovered, the decoder sends a single-bit feedback message to the sender to inform the
success of decoding.

Let c be the number of output symbols during transmission. Let cS be the average
number of output symbols when successful recovery of k input symbols can be
obtained. As shown in [1], cS � k holds. Let η and ɛ be the redundancy and overhead
for LT codes, such that g ¼ cS=k, and ɛ = η − 1. It is obvious that η � 1 and ɛ � 0.

Although LT codes with RS distribution can asymptotically achieve, i.e. η ! 1, as
k ! ∞, η is significantly larger than 1 when k is finite [4, 5]. Hence, it is needed to
improve the performance when k is finite.

3 Design of Two Degree Forest Based LT Codes

In this section, the two degree forest based LT (TBLT) codes are proposed. The
encoding process is the same as the LT codes, while the decoding process is changed.
First, the structure of two degree forest for decoder is introduced. Then, the updating
procedure for two degree forest is proposed. Finally, based on the feedback rule, the
decoding algorithm for TBLT is proposed.

3.1 Two Degree Forest

As mentioned before, the decode process can be promoted considerably if appropriate
input symbol can be sent to destination. However, which input symbol is most
important for decoder is unclear. To solve this problem, the two degree forest of output
symbols is formulated at decoder as follows.

Definition 1. Two degree tree (TDT): a TDT, C, is a tree, which has following
properties: First, the nodes of the tree are output symbols, which have exact two
neighbors as input symbols. Second, let v1 and v2 be two nodes in C, then one link
exists between v1 and v2, if and only if v1 and v2 have exactly one same neighbor.
Third, as a tree, C has no loop path.

Moreover, let VC and UC be the set of output symbols in C and set of neighbor input
symbols in C, respectively. Let |VC| and |UC| be the number of elements in VC and UC

respectively, then it is obviously that |UC| = |VC| + 1.

Definition 2. Two degree forest (TDF): a TDF, X, is a graph consists of two degree
trees, such that X ¼ C1; . . .CNXf g, which has following property. Let C(1) and C(2) be
any two TDTs in X. Let v(1) 2 V(1) and v(2) 2 V(2) be any two output variables, which
lie in C(1)and C(2) respectively. Then, v(1) and v(2) have no same neighbor input symbol.

For example as shown in Fig. 1, a TDF with two TDTs is formulated at decoder.

Two Degree Forest Based LT Codes with Feedback 235

The most important feature for TDF is that, for each TDT, C 2 X, the input
symbols in UC can be recovered with breadth first search, if any input symbol in UC is
obtained. For example as shown in Fig. 2, if the input symbol, u2 is obtained, then u4
can be recovered, since u2 and u4 are neighbor input symbols of the output symbol
indexed by 2,4 in Fig. 2. Next, u14, u8 and u12 can be recovered, since output symbols
indexed by 2,14, 2,8, and 4,12 are adjacent to the output symbol indexed by 2,4.
Finally, u18 and u16 can be recovered, since output symbols indexed by 8,18 is adjacent
to output symbols indexed by 2,8, and output symbols indexed by 4,16 is adjacent to
output symbols indexed by 4,12.

3.2 Updating Two Degree Forest

In the receiving and decoding process, the two degree forest is updated according to
following operations.

(1) Tree adding: Let C(1) 2 X. Let ev be the new output symbol that reaches desti-
nation, such that ev has two neighbor input symbols, ~u1 and ~u2. If ~u1 2 UC 1ð Þ , and
~u2 62 UC 1ð Þ , then C(1) can be added with a new output symbol such that VC 1ð Þ ¼
VC 1ð Þ [evf g and UC 2ð Þ ¼ UC 2ð Þ [~u2f g.

(2) Tree combining: Let C(1), C(2) 2 X. Let ev be the new output symbol that reaches
destination, such that ev has two neighbor input symbols, ~u1 and ~u2. If ~u1 2 UC 1ð Þ

and ~u2 2 UC 2ð Þ , then C(1) and C(2) can be combined to formulate a new tree ~C, such
that V~C ¼ VC 1ð Þ [VC 2ð Þ [evf g, and U~C ¼ UC 1ð Þ [UC 2ð Þ .

1,3

1,9 3,7

1,11 9,17 3,23 7,43 7,35

9,21 33,43 35,37

2,4

2,8 4,12

2,14 8,18 4,16

{1,3,7,9,11,17,21,23,33,35,37,43} {2,4,8,12,14,16,18}

Fig. 1. Simple example of two degree forest.

2,4

2,8 4,122,14

8,18 4,16

2
4

1214 8

18 16

Fig. 2. Recovery of input symbols within one two degree tree

236 L. Liu and F. Liu

(3) Tree removing: Let C(1) 2 X be one TDT, such that all input symbols in UC 1ð Þ are
recovered by decoder, then C(1) is removed from TDF, namely, X = X/C(1).

Entire updating procedure for two degree forest is as follows.

3.3 Feedback Rule and Decode Process

As mentioned before, for any C(1) 2 X, all the input symbols within UC 1ð Þ can be
recovered with a breadth first search, if one of them is obtained. Furthermore, more
input symbols can be recovered iteratively with those input symbols within UC 1ð Þ ,
according to the belief propagation decoding algorithm. Hence, it is reasonable for the
decoder to inform the sender to send one symbol ~u 2 UC 1ð Þ , when UC 1ð Þ

�� �� is large
enough. The feedback rule is as follows.

Let b > 0 be one integer. Then, if one C(1) 2 X exists, such that UC 1ð Þ
�� ��� b, the

decoder send a feedback message to the sender, that the sender should send one
original input symbol ~u, such that ~u 2 UC 1ð Þ . Such feedback rule is called Fb ~uð Þ, where
b is called the feedback threshold.

Based on the two degree forest and feedback rule, the decoding algorithm is pro-
posed as follows.

Two Degree Forest Based LT Codes with Feedback 237

Compared with the traditional BP decoding algorithm, additional cost for TDF
based decoding algorithm is small. For one thing, the two degree forest doesn’t need
much storage resource, since, the decoder only needs to restore the index information
of input symbols and output symbols to maintain the structure for TDF. For another,
since each output symbol in TDF has exactly two adjacent input symbols, it doesn’t
need much calculation cost to put each output symbols into suitable TDT.

4 Simulation Results and Analysis

As mentioned before, the basic aim for the proposed algorithm in this paper is to reduce
the redundancy of LT codes, when k is relatively small, hence, let k = 500, 1000, in
simulation. Next, the classical robust soliton distribution is used through simulation,
where it is set that d = 0.1, and c = 0, 0.1, 0.2 for comparison. Moreover, in our
algorithm, the feedback threshold, b, is set to be 10, 20, 30, 40, 50 for comparison.

Following two algorithms are used for comparison:

(1) The classical BP decoding algorithm for LT codes [1].
(2) The SLT codes [6], which is based on the idea that relative larger degree should

be generated, if the sender is informed of the number of input symbols that have
already recovered.

The simulation results are obtained through getting average values of 10000 tests,
for each simulation condition.

238 L. Liu and F. Liu

Comparison of simulation results for overhead is proposed in Fig. 3. TBLT codes
achieve lower overhead than traditional LT codes and SLT codes, no matter what
feedback threshold value is. When k = 500, compared with the best case of SLT codes
that the overhead is about 0.25, the best case of TBLT codes is about 0.15, which is
about 40% lower. Moreover, it should be noticed that TBLT codes get the smallest
overhead, when c = 0, while LT codes and SLT codes get the smallest overhead when
c = 0.1. Such results can be explained as follows. The two degree output symbols are
of great importance for the decode process in TBLT codes. However, according to the
definition of robust soliton distribution [1], the probability of degree two decreases as
c increases, which is negative for the efficiency of two degree forest.

Comparison of simulation results of overhead when packet error rate is larger than
0 is shown in Fig. 4. It is naturally that, the larger packet error rate is, the larger the
overhead is. The overhead of TBLT codes are still lower than that of the traditional LT
codes and SLT codes under different c values, no matter what the packet error rate is.

The simulation results for decode process is expressed through the relationship
between average decoded number of input symbols and the number of output symbols
received at decoder, as shown in Fig. 5. For simplicity, the best case, c = 0.1, is used
for LT codes and SLT codes. While, when c = 0, TBLT codes achieve smallest
overhead. Compared with LT codes and SLT codes, TBLT codes can accelerate the
decoding process. When number of received output symbols at decoder equals k, LT
and SLT can only recover a small fraction of input symbols, while, TBLT can recover
majority of input symbols.

0 0.05 0.1 0.15 0.2 C

0.2

0.4

0.6

O
ve

rh
ea

d

Overhead when k=500

0 0.05 0.1 0.15 0.2

0.2

0.4

0.6

Overhead when k=1000
LT Code
SLT Code
TBLT Code = 10
TBLT Code = 20
TBLT Code = 30
TBLT Code = 40
TBLT Code = 50

Fig. 3. Comparison of simulation results of overhead when packet error rate is zero of degree

0 0.05 0.1 0.15 0.2
PER

0

0.2

0.4

0.6

0.8

1

1.2

O
ve

rh
ea

d

Overhead k=500

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

1.2
Overhead k=1000

LT, c = 0
LT, c = 0.1
LT, c = 0.2
SLT, c = 0
SLT, c = 0.1
SLT, c = 0.2
TBLT, c = 0, =30
TBLT, c = 0.1, =10
TBLT, c = 0.2 , = 10

Fig. 4. Comparison of simulation results of overhead when packet error rate is larger than 0.

Two Degree Forest Based LT Codes with Feedback 239

Simulation results for the relationship between average stored output symbols and
the number of received output symbols at decoder is given by Fig. 6. Compared with
LT codes and SLT codes, the storage resource can be saved considerably by TBLT
algorithm. For one thing, compared with LT codes and SLT codes, the peak value of
storage resource is reduced by about 35% for TBLT codes. For another, the amount of
storage resource of TBLT codes reduce much early than that of LT codes and SLT
codes, which increases the efficiency of buffer’s usage.

Simulation results for the relationship between average feedback times and the
number of received output symbols at decoder is given by Fig. 7. Compared with SLT

0 500 1000
0

200

400

600

A
ve

 D
ec

od
e

N
um

Decode Process k=500

0 500 1000 1500 2000
Receive Num

0

500

1000
Decode Process k=1000

LT Code
c = 0.1
SLT Code
c=0.1
TBLT Code
c=0 = 30
TBLT Code
c=0 = 10

Fig. 5. Comparison of simulation results for the relationship between average decoded number
of input symbols and the receive number of output symbols.

0 500 1000
Receive Num

0

200

400

600

A
ve

ra
ge

 B
uf

fe
r N

um

Buffer Num k=500

0 500 1000 1500 2000
0

500

1000 Buffer Num k=1000
LT
c = 0.1
SLT
c=0.1
TBLT
c=0, = 30
TBLT
c=0, = 10

Fig. 6. Comparison of simulation results for the relationship between average stored output
symbols and the number of received output symbols at decoder.

0 500 1000
Receive Num

0

20

40

60

A
ve

ra
ge

 F
ee

db
ac

k
N

um

Decode Process k=500

0 500 1000 1500 2000
0

50

100
Decode Process k=1000

SLT c=0.1
TBLT c=0 = 30
TBLT c=0 = 10

Fig. 7. Comparison of simulation results for the relationship between average feedback times
and the number of received output symbols at decoder.

240 L. Liu and F. Liu

codes, TBLT codes require much less feedback times. Especially, when b = 30, the
average feedback times can be reduced by about 80%, compared with SLT codes.

5 Conclusion

This paper proposes two degree forest based LT codes to enhance the performance of
LT codes in the relatively small data-block length case. To help the sender to send the
appropriate output symbols to accelerate decoding, the two degree output symbols are
gathered into separable trees, so that decoder can get the indexes of badly needed input
symbols if the size of some tree is larger than certain threshold value.

Simulation results show that TBLT codes can reduce coding overhead by about
40%, compared with traditional LT codes and SLT codes. Moreover, the storage cost
during entire decoding process can be reduced considerably. Finally, compared with
SLT codes, TBLT codes require much less feedback opportunities.

Acknowledgments. This work is supported in part by National Natural Science Foundation of
China (Grant Nos. 61231013, 91438206, 91538202 and 61521091) and Fundamental Research
Funds for the Central Universities (Grant No. YMF-14-DZXY-027).

References

1. Luby, M.: LT codes. In: The 43rd Annual IEEE Symposium on Foundations of Computer
Science, pp. 271–280 (2002)

2. Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory 52, 2551–2567 (2006)
3. Maymounkov, P.: Online codes, NYU Technical report TR2003-883 (2002)
4. Bodine, E., Cheng, M.: Characterization of Luby transform codes with small message size

for low-latency decoding. In: IEEE International Conference on Communications, ICC,
pp. 1195–1199 (2008)

5. Hyytia, E., Tirronen, T., Virtamo, J.: Optimal degree distribution for LT codes with small
message length. In: 26th IEEE International Conference on Computer Communications,
pp. 2576–2580 (2007)

6. Hagedorn, A., Agarwal, S., Starobinski, D., Trachtenberg, A.: Rateless coding with
feedback. In: INFOCOM, pp. 1791–1799 (2009)

7. Talari, A., Rahnavard, N.: LT-AF codes: LT codes with alternating feedback. In: IEEE
International Symposium on Information Theory Proceedings, pp. 2646–2650 (2013)

8. Talari, A., Rahnavard, N.: Robust LT codes with alternating feedback. Comput. Commun.
49(1), 60–68 (2014)

9. Younis, O., Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering approach for
ad hoc sensor networks. IEEE Trans. Mob. Comput. 3(4), 366–379 (2004)

10. Hu, Y.F., Berioli, M., Pillai, P., Cruickshank, H., Giambene, G., Kotsopoulos, K., Guo, W.,
Chan, P.M.L.: Broadband satellite multimedia. IET Commun. 4(13), 1519–1531 (2010)

Two Degree Forest Based LT Codes with Feedback 241

	Two Degree Forest Based LT Codes with Feedback
	Abstract
	1 Introduction
	2 Preliminary
	3 Design of Two Degree Forest Based LT Codes
	3.1 Two Degree Forest
	3.2 Updating Two Degree Forest
	3.3 Feedback Rule and Decode Process

	4 Simulation Results and Analysis
	5 Conclusion
	Acknowledgments
	References

