
FPGA-Based Turbo Decoder Hardware
Accelerator in Cloud Radio Access Network

(C-RAN)

Shaoxian Tang(B), Zhifeng Zhang, Jun Wu(B), and Hui Zhu

College of Electronics and Information Engineering,
Tongji University, Shanghai 201804, People’s Republic of China

{1433273,zhangzf,wujun,1433250}@tongji.edu.cn

Abstract. In the Cloud Radio Access Network (C-RAN), the Software
Defined Radio (SDR) is combined with multi-mode base stations (BSs)
together. A lot of BSs are centralized in a Cloud center, the centralized
BSs need high bandwidth and cost-effective resource allocation. Since
BSs may also run on the virtualized machines, the hardware accelerator
can provide faster signal processing speed. This paper uses the Xen vir-
tualization to set up a C-RAN platform, where the SDR and the FPGA
hardware connected with PCIe interface to server as the signal process-
ing hardware accelerator. Experimental results demonstrate the turbo
decoder accelerator based on the FPGA and Xen platform has good per-
formance to support the SDR signal processing with high bandwidth.
The turbo decoder hardware accelerator solved the timing constraints in
C-RAN.

Keywords: C-RAN · SDR · Xen · FPGA · Hardware accelerator ·
Turbo decoder

1 Introduction

Radio Access Network (RAN) is wireless communication infrastructure. How-
ever, with the costs of distributed base stations deployment increasing, the
mobile operators have to develop a new evolved network architecture. Central-
ized base station pool with the cloud computing-based architecture supports
2G, 3G, 4G and future wireless communication standards. C-RAN is an eco-
friendly and energy efficient infrastructure. The base stations can be reduced
with centralized processing of this architecture [5]. The C-RAN emerged to
offer a low cost, high reliability, low latency and high bandwidth green network
architecture [8].

In order to support multi-network, the operators usually should establish
multi-mode base stations (such as GSM, UMTS and LTE), which increase costs.
The SDR meets the multi-standards for low cost operation by software re-
configuration. The SDR platform can be implemented when the large scale Base-
band Unit (BBU) pool has high-speed and low-latency interconnection. The BBU
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Q. Chen et al. (Eds.): ChinaCom 2016, Part I, LNICST 209, pp. 211–220, 2018.

DOI: 10.1007/978-3-319-66625-9 21

212 S. Tang et al.

with virtual BS pool is shown in Fig. 1. Therefore, the SDR with open platform
will become one of the mainstream products.

BBU

GSM

UMTS

LTE

RRU

Virtual BS Pool

Multi-core
Network

Fig. 1. Virtual base station pool

In the SDR base stations, the baseband process includes some computation
intensive tasks. Therefore, using the hardware accelerator instead of software can
reduce the processing time of these tasks such as turbo decoder, MIMO decoder
and FFT etc. Since the speed of the hardware operation has greatly improved,
taking advantage of hardware resources is a good option. Virtualization is the
technology to create a virtual version of something, such as computer hardware
platforms, operating system, storage devices and network resources. Through
the virtualization, we can replace many small physical servers by several larger
physical servers to increase the utilization of hardware resources such as CPU and
FPGA. Therefore, using the virtual base stations can reduce the cost and fully
utilize the hardware resources. Xen is a hypervisor that allows multiple computer
operating systems to execute on the same computer hardware concurrently. Xen
has para-virtualization, which uses special API instead of simulate hardware to
modify the guest OS [1]. So we can use the guest OS to access hardware through
the hypervisor with the special API. Using the para-virtualization can minimize
the performance loss.

The BS based on the SDR platform has more choices to implement the signal
processing, not only uses CPU in the server. The multi-core GPP-SDR platform
was proposed in Sora, a programmable software radio platform on PC archi-
tectures [6]. However, it only has single terminal to use the platform. Digital
Signal Processor (DSP) have high capabilities of floating point, which combined
with the GPP has improved the BBU processing density and reduced the power
consumption effectively. There are some SDR platforms based on FPGA [4] and
DSP [3].

FPGA virtualization, such as [2] brings FPGA as a shareable resources in the
cloud, which demonstrate that FPGA can be used in the C-RAN for the signal
processing with good performance. pvFPGA [7] also runs in the Xen virtualized
environment and uses FPGA to accelerate the process. It uses the accelerator to
compute FFT with Xilinx IP core. So using the accelerator for decoding in the
SDR base stations can reduce the overall time effectively.

Turbo Decoder HA in C-RAN 213

In this paper, we design a turbo decoder hardware accelerator in the SDR
base stations based on FPGA and Xen virtualization. The rest of paper is orga-
nized as follows. Section 2 is the system design. Section 3 is the detailed design
of the turbo decoder in FPGA. Section 4 gives simulation and evaluation of the
turbo decoder hardware accelerator. Finally, Sect. 5 concludes the paper.

2 System Design

The system has the structure shown in Fig. 2, which includes the SDR platform
based on general purpose computer server, and the custom designed hardware
accelerators. Virtualization is utilized to support multiple BSs on one physi-
cal server. Figure 2 is a simplified SDR platform with only one single virtual
machine. The Guest OS is based on Xen virtualization. Although only one guest
OS is showed, the platform supports multiple guest OS running on the host OS,
each corresponds to one virtualized BS. The system has hardware accelerators to
meet the requirement of high bandwidth baseband signal processing. The accel-
erator is implemented with FPGA, using Verilog HDL and IP cores provided by
Xilinx. PCIe interface is used to support data exchanges between the hardware
accelerator and the host OS. The Xen VMM and the PCIe backend driver is
located in the host OS, and the front-end driver is in the Guest OS, which is
used for transfer the data between the SDR platform and backend driver.

2.1 Virtualized SDR Platform

The general server system runs Xen hypervisor, also called Virtual Machine Mon-
itor (VMM), to build the virtualized SDR platform. The architecture of Xen is
shown in Fig. 3. The SDR platform is located in the Guest OS (VM), uses the
front-end driver to communicate with Dom0 (a privileged virtual domain). The

PCIe Driver

SDR
Platform

FPGA
Accelerator

Signal
Process

Signal
Process

Guest OS

Backend Driver

Host OS

Front-end Driver

Fig. 2. System design

214 S. Tang et al.

Hardware (SMP, physical memory, Ethernet, PCIe)

Dom0

Linux Kernel

Backend
Driver

Real
Driver

Device Manager

VM

Linux Kernel

Front-end
Driver

Software
(SDR Platform)

VM

Linux Kernel

Front-end
Driver

Software
(SDR Platform)

Xen VMM

Fig. 3. Xen architecture

data transfer in Xen VMM is made up of three different paths, namely the shared
memory, the event channel and grant table. Large data is exchanged through
shared memory to achieve high throughput without memory copy, and the mes-
sage use event channel and grant table to transfer requests and small amount
of information between Dom0 and other VMs. Supporting virtually centralized
BS, or in other words, supporting multiple BS in one physical server requires
a significant higher throughput of encoded and decoded data in compares with
the traditional distributed BS structure. To meet such a requirement, PCIe is
used as data transfer interface between server and the FPGA-based hardware
accelerator. For the virtual platform, we implement the PCIe backend driver in
Dom0 and front-end driver in VMs. The SDR platform can use the front-end
driver as the real PCIe driver to write encoded data and read decoded data after
computing process.

2.2 Cloud Base Stations

The centralized BBUs need to take advantage of the base station resources. In the
cloud base stations, the SDR platform can abstract resources as a open interface
and share them between multiple users at the same time. In the cloud base
station, we care about the LTE physical layer, which includes signal processing.
In our system, the SDR platform within the server offers its interface to users to
take advantage of virtual resources in the guest OS. The FPGA are connected
to the server with PCIe. On top of the native server, the VMM manages all the
hardware resources, including the hardware accelerators. Users in the VMs use
the accelerator and then complete other processing. The Dom0 is responsible for
the accelerators scheduling and uplink and downlink data transmission control.

2.3 FPGA Hardware Accelerator

In this section, the hardware accelerator is described. Xilinx virtex-6 FPGA is
used as the hardware resources to implement the turbo decoder and the PCIe

Turbo Decoder HA in C-RAN 215

interface. The design of hardware accelerator include two sub-modules: PCIe
interface and turbo decoder logic.

PCIe Interface. For supporting high channel bandwidth, the LTE needs to
finish decoding process as fast as possible. The requirement is to finish it in 1 ms
for a sub-frame. We use Xilinx PCIe IPcore v1.7 for the PCIe and DMA design.
The PCIe interface has a transfer speed of 400 MB/s. Based on the calculation,
a data transfer interface based on PCIe can meet the bandwidth requirement
of our experimental system, supporting read and write operation at the same
time. The actual data driver transfer data with FPGA module via the PCIe
data acquisition card. The PCIe interface use DMA to control the encoded data
transform the server data pool to the FIFO in FPGA decoder layer. The block
size in data pool is from 4 KB to 1 MB, we can reconfigure it when the driver is
loaded.

Turbo Decoder Logic. The detailed design of turbo decoder is shown in next
section.

3 Turbo Decoder Design

The decoder is used with a compared encoder to provide an extremely effective
way of transmitting data reliably over noisy data channels. The turbo decoder
operates very well under low signal-to-noise conditions and provides a perfor-
mance close to the theoretical optimal performance. The turbo code has good
error correction performance, it has been widely used in wireless communication.

Turbo decoder has long interleaving length and need iterate many times, so
it has large delay to get the decoding results. For the CPU, it takes very long
time to process the decoding operation. We use FPGA instead of CPU for turbo
decoding. The FPGA has high clock frequency and parallel processing, all of
which can speed up the decoding operation.

3.1 Interface Design

The data needs to use the soft decision input and output, the data received from
the SDR platform is 16 bits. Through the quantization, 8 bits (include 5 integer
bits and 3 fractional bits) data is input to the decoder accelerator. The PCIe
interface has 64 bits width and it can transfer 64 bits data in one clock cycle. So
we can use it transfer two groups data at the same clock cycle. The algorithm
is known as the Max-scale algorithm, which is a simplified algorithm based on
the Log-Map algorithm.

3.2 Design of Turbo Decoder

Figure 4 shows the architecture of turbo decoder. It has three layers.

216 S. Tang et al.

Top_layer

Control_layer

Decoder_layer

PCIe Interface DMA Controller

RX
FIFO

TX
FIFODecoder

Server(SDR Platform)

High Frequency
Clock

Fig. 4. Turbo decoder design

Top Layer. PCIe hardware interface and the DMA controller is in the top layer.
The PCIe driver in the FPGA coordinates with the driver in server to transfer
data and control signal.

Control Layer. FPGA reset the decoder core upon the power is on, and it
is always waiting for the encoded data and signals input. When the data and
parameters are delivered into the FPGA through PCIe, the control layer sends
the parameters to the decoder layer first, such as the data block size, reset signal
and data count information. Then the encoded data is sent to decoder layer for
decoding. This layer also catch the decoded data from decoder layer and send it
to the PCIe driver in server with the DMA controller.

Decoder Layer. The decoder layer includes the turbo decoder intellectual prop-
erty core (IP core) which is the Xilinx IP core for the 3GPP LTE turbo decoder.
The main interfaces of the IP core are data input, data output and control sig-
nals. We use FIFO to cache data and isolate asynchronous clock between DMA
and decoder. The decoder core use 250 MHz clock frequency to achieve higher
data throughput while the data transfer clock frequency is 62.5 MHz. When the
control layer receives control signal and the encoded data, the information is
written into the corresponding RX FIFO in the decoder layer. If the decoder
core is free and the data is in the RX FIFO, the data would be transferred into
the core.

The decoder layer masks the invalid data into the RX FIFO, which comes
from the entire block data transfer through the DMA. After the decoding oper-
ation, the decoded data is put into the TX FIFO. At the same time, control
layer detect the TX FIFO status and the valid data is read. When the SDR
platform receives the decoded data from the PCIe driver, the whole operation is
completed.

Turbo Decoder HA in C-RAN 217

3.3 Pipeline Process

We write and read data simultaneously with the full-duplex mode by PCIe inter-
face. For the encoded data, the data length ranges from to 24 KB for all 188
different code length in the range of 40 to 6144 bits. The average time for writing
data into decoder is about 24µs and for the reading data from decoder is 10µs.
Taking the decoding stage into consideration, we can make the overall process
pipelined. Figure 5 shows the pipelined process for the data write, decoding com-
putation and data read. For the pipelined process, each data block decoding time
can be the maximum of reading data, decoding and writing data. In order to use
the pipeline operation and adapt to single user, the decoder will compute every
data block independently.

Data Write Decoding Data Read

Data Write Decoding Data Read

Data Write Decoding Data Read

Block 1:

Block 2:

Block 3:

Fig. 5. Pipeline process

3.4 Implementation of Turbo Decoder

The proposed layers of the hardware accelerator is implemented by Verilog HDL
at a structural level and then synthesized with Xilinx Synthesis Technology
(XST). Then it was placed and routed using ISE Implement Design. After that,
the programming file is generated for the FPGA to process the turbo decoder.
The implementation results can be illustrated by the Table 1. It shows the uti-
lization of the FPGA resources.

Table 1. Resource utilization

Resource Used Available Utilization

Slice register 45208 301440 14%

Slice LUT 28955 150720 19%

36 Kb block RAM 98 416 23%

18 Kb block RAM 56 832 6%

There are a number of factors which influence the throughput of the FPGA
accelerator, such as the processing clock frequency, iterations and algorithm type.
Table 2 shows the factors we set to increase the decoder throughput. Within the
decoder layer, we use higher clock frequency to decode than the data transfer.
The accelerator has the same number of iterations and algorithm type with
software implementation, which can compare the performance fairly. We use the

218 S. Tang et al.

Table 2. Throughput factors

Factors Settings

Data transfer clock frequency 62.5 MHz

Processing clock frequency 250 MHz

Iterations 6

Algorithm type Max-scale

Processing units 8

Parallel data input/output width 2 words (64 bits)

maximum processing units and the parallel data input/output width in the IP
core to achieve higher throughput. The number of processing units is six, and
the parallel data input/output width is 64 bits which matches PCIe interface
width.

4 Simulation and Evaluation

In order to minimize the overhead and reduce the time consumption, we can
simulate the turbo decoder to evaluate the costs. Xilinx ISE and Modelsim are
used to design and simulate the turbo decoder.

Table 3 shows the simulation decoding time for the code length from 40 bits to
6144 bits, including write data time, decoding time and read data time. Because
the turbo code rate is 1/3, so the encoded data length is 3 times longer than
the decoded data. The input data can be calculated immediately while all the
valid data input into the RX FIFO, and the invalid data can be masked by the
decoder layer. However, because of the characteristic of the DMA, all the block
data should be send to the data pool, and then the driver can read the decoded
data from this block. So the read data time is 10µs for every single code length.
In order to reduce this time consumption, we choose the minimize block size:
4 KB for the DMA data transmission.

Table 3. Simulation decoding time

Code length Data input Decoding Data output

40 bits 0.5µs 25.1µs 10µs

512 bits 4.2µs 30.1µs 10µs

1024 bits 8.3µs 31.8µs 10µs

2048 bits 16.5µs 32.5µs 10µs

3008 bits 24.2µs 38.4µs 10µs

4032 bits 32.4µs 45.2µs 10µs

5184 bits 41.6µs 52.1µs 10µs

6016 bits 48.3µs 59.5µs 10µs

Turbo Decoder HA in C-RAN 219

Figure 6 shows the experimental results of decoding time for the code length
from 40 bits to 6016 bits. The hardware accelerator decoding time for the max
code length is almost one tenth of the software decoding. And the average decod-
ing time is one eighth of the software decoding. So we can use the hardware accel-
erator to support at least 5 M bandwidth of LTE platform. While the software
decoding of LTE platform cannot support even the 2.5 M bandwidth because
the total time exceeds 2 ms.

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

1200

1400

1600

1800

Code length (bits)

Ti
m

e
(u

s)

Hardware
Software

Fig. 6. Decoding time

We run the LTE physical layer in VM and native server respectively to eval-
uate the overhead of virtualization. Table 4 shows the overhead of Xen virtual-
ization. For the long code length, the overhead can be relatively small (about
10µs), which can be accepted. For the short length, we can change the algorithm
to combine multiple data blocks together to improve the performance.

Table 4. Xen virtualization overhead

Code length Native VM Xen VM overhead

40 bits 68.3µs 77.6µs 13.6%

512 bits 69.2µs 77.2µs 11.6%

1024 bits 78.9µs 83.9µs 6.3%

2048 bits 87.1µs 95.5µs 9.6%

3008 bits 103.1µs 110.1µs 6.8%

4032 bits 117.4µs 127.1µs 8.3%

5184 bits 135µs 148.2µs 9.8%

6016 bits 150.8µs 160.4µs 6.4%

220 S. Tang et al.

5 Conclusions and Future Work

This paper designs and implements a FPGA-based turbo decoder hardware
accelerator for C-RAN. Xen virtualization is used to support multiple virtual
BSs on the C-RAN platform, and the FPGA hardware connected with PCIe
interface to server as hardware accelerator. Experimental results demonstrate
the turbo decoder accelerator based on the FPGA and Xen platform has much
better performance to support the real time signal process with high bandwidth.
The turbo decoder hardware accelerator can solve the timing constraints well in
the C-RAN.

We believe the accelerators can be used for all VMs in C-RAN. So we will
design the scheduling algorithm and make the accelerators support parallel
processing of multitasking. And we will also design more accelerators for the
C-RAN such as FFT and MIMO decoder to further reduce overall processing
latency of C-RAN.

Acknowledgments. This work was supported in part by National Science and Tech-
nology Major Project of China under Grant 2014ZX03003003, in part by the National
Natural Science Foundation of China under Grant 61390513.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Oper. Syst.
Rev. 37(5), 164–177 (2003)

2. Chen, F., Shan, Y., Zhang, Y., Wang, Y., Franke, H., Chang, X., Wang, K.: Enabling
FPGAs in the cloud. In: Proceedings of the 11th ACM Conference on Computing
Frontiers, p. 3. ACM (2014)

3. Glossner, J., Hokenek, E., Moudgill, M.: The sandbridge sandblaster communica-
tions processor. In: Tuttlebee, W.H.W. (ed.) Software Defined Radio, pp. 129–159.
Wiley (2004)

4. Haruyama, S.: FPGA in the software radio. IEEE commun. Mag. 37, 109 (1999)
5. China Mobile. C-RAN: the road towards green RAN, version 2 . White Paper (2011)
6. Tan, K., Liu, H., Zhang, J., Zhang, Y., Fang, J., Voelker, G.M.: Sora: high-

performance software radio using general-purpose multi-core processors. Commun.
ACM 54(1), 99–107 (2011)

7. Wang, W.: Accessing an FPGA-based hardware accelerator in a paravirtualized
environment. Ph.D. thesis, Université d’Ottawa/University of Ottawa (2013)

8. Wu, J., Zhang, Z., Hong, Y., Wen, Y.: Cloud radio access network (C-RAN): a
primer. IEEE Netw. 29(1), 35–41 (2015)

	FPGA-Based Turbo Decoder Hardware Accelerator in Cloud Radio Access Network (C-RAN)
	1 Introduction
	2 System Design
	2.1 Virtualized SDR Platform
	2.2 Cloud Base Stations
	2.3 FPGA Hardware Accelerator

	3 Turbo Decoder Design
	3.1 Interface Design
	3.2 Design of Turbo Decoder
	3.3 Pipeline Process
	3.4 Implementation of Turbo Decoder

	4 Simulation and Evaluation
	5 Conclusions and Future Work
	References

