
A Measurement and Security Analysis
of SSL/TLS Deployment in Mobile

Applications

Yu Guo1, Zigang Cao1(&), Weiyong Yang2, and Gang Xiong1

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

caozigang@iie.ac.cn
2 NARI Group Corporation, Nanjing, China

Abstract. Secure Socket Layer (SSL) and Transport Layer Security (TLS) have
been widely used to provide security in communications. With the rapid devel-
opment of mobile Internet, they are progressively applied in mobile applications.
It is interesting to study the security of their usage. However, most of existed
researches on SSL/TLS focus on the whole ecosystem, while few of them have
in-depth study on the status quo of mobile security about SSL/TLS. In this paper,
we measure the network behaviors of top 50 popular applications on Android and
iOS platforms to reveal the security problems of SSL/TLS deployment in mobile
Internet. A system is implemented which can extract the handshake parameters
and inspect SSL deployment status. We also demonstrate some typical severe
problems by performing man-in-the-middle (MITM) attacks against six appli-
cations. We believe our study is very consequential for SSL deployment on
mobile platforms and the design of secure applications in the future.

Keywords: SSL � TLS � Mobile application security � Measurement �
Android � iOS

1 Introduction

According to the report [1] published by China Internet Network Information Center
(CNNIC) in December 2015, the amount of Chinese Internet users has reached 688
million and mobile Internet users account for 90.1% of it, which leads to a ubiquitous
usage of mobile applications in people’s daily life. However, almost every application
has access to users’ private information, and the problems raised by applications
leaking users’ sensitive data occur frequently. Therefore, it is legitimate to assess the
security of mobile applications and improve it.

Secure Sockets Layer (SSL) and its successor Transport Layer Security (TLS) are
widely used to provide end-to-end communication security for mobile applications.
Although SSL/TLS protocols can be effectively against many types of network attacks,
there are still various security problems due to unrated deployment of SSL/TLS in
applications. As were shown in previous works [2], some mobile applications leak
users’ personally identification information (PII), while some applications suffer from
the risk of being attacked by MITM [3].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
Q. Chen et al. (Eds.): ChinaCom 2016, Part I, LNICST 209, pp. 189–199, 2018.
DOI: 10.1007/978-3-319-66625-9_19



According to the previous works [2–4] on the usage of SSL/TLS protocols, we
summarize three main factors that can jeopardize applications into insecure situations:

(1) Improper SSL/TLS deployment on an application.
(2) The usage of low-security parameters in SSL handshake, such as protocol version,

cipher suites and so on. Early SSL/TLS versions have protocol flaws, and some of
the algorithms used by SSL/TLS are weak, like DES or MD5 algorithms. In
addition, the use of self-signed certificates results in risks.

(3) Incomplete certificate validation.

Considering that Android and iOS now account for the major share of the global
mobile operating system market, we perform our measurement on Android and iOS
mobile platforms. We choose the popular top 50 applications on each platform. We get
the dataset via combining manual and automated methods, capturing each application’s
packets while it is used. Then we design and implement a system that can analyze these
packets, detecting whether an application deploys SSL/TLS protocols, and extracting
its SSL handshake parameters as well as certificate chains. Apart from the statistics and
analysis, we also perform MITM experiments against applications using self-signed
certificates and several representative applications.

In summary, this paper makes the following contributions:

• We demonstrate that sensitive data can be accessed easily in some applications,
emphasizing the great significance of deploying SSL/TLS properly in mobile
applications. We find that there are even a few applications leaking passwords over
plain text.

• We design and implement a system for detecting the status of SSL deployment in
applications and its security.

• We make statistics on the selection of SSL handshake parameters. We find that 14%
of Android apps and 24% of iOS apps use a set of low-security parameters, which is
vulnerable when facing attacks.

• We discover some certificate validation problems in several applications. Appli-
cations with self-signed certificates fail to resistant MITM attacks.

• Based on our results, we propose concrete recommendations on SSL deployment
for application designers to provide more secure applications.

The remainder of this paper is structured as follows: in Sect. 2, we discuss related
work. Section 3 explains the origin of our dataset and the methodology of our mea-
surement. Our system is presented in this section as well. In Sect. 4, we illustrate our
measurement results, propose concrete recommendations for SSL deployment and
describe our future work. Finally, we conclude our study in Sect. 5.

2 Related Work

There have been a few previous works studying the ecosystem of SSL/TLS protocols
and analyzing the improper usage of SSL/TLS. He et al. [4] designed a system for
vetting the improper SSL usage which may cause vulnerabilities. Their system detects
the source code to find design flaws of applications. Sounthiraraj et al. [5] also found

190 Y. Guo et al.



SSL validation vulnerabilities in the source code from Android applications. Thus, the
major difference between their work and ours is that we focus on the network traffic
generated by applications instead of the source code.

As for the disclosure of sensitive information, recent studies [2, 6] show that when
using applications, the user is tracked by third parties. At the same time, the applica-
tions being used is leaking users’ personally identifiable information without the users’
knowledge. Balebako et al. [6] performed a study to reveal and control privacy leaks in
mobile network traffic. Roesner et al. [7] presented a method to detect and resistant
privacy leaks by the third party trackers. Egele et al. [8] detected privacy leaks in iOS
applications. We also have concerns about privacy leaks from mobile applications.
However, in this paper, we only discuss the privacy leaks resulted from improper SSL
deployment.

Many works in the past have studied the correlation between the SSL handshake
parameters and the SSL/TLS server’s security. Levillain et al. [9] assessed the quality
of https server by analyzing parameters included in the server’s response after sending
a stimuli to the server. He proposed criteria for assessing TLS quality, which consist of
the protocol version, cipher suite, TLS extension, quality of certificate chain and so on.
Pukkawanna et al. [10] conducted a research to classify the SSL servers into different
security levels using SSL handshake parameters. We reference their understanding of
SSL handshake parameters.

Pukkawanna et al. also proposed certificate CA to be an important measure to
assess the security of SSL/TLS servers [10]. A certificate issued by a CA offering
low-price or free certificates is likely to be a risky certificate. Besides, Georgiew et al.
[11] tried MITM attacks against several applications and found over twenty certificate
and hostname verification vulnerabilities. Trummer and Dalvi [3] used BurpSuite to
detect applications’ certificate validation. They found that 43 applications failed to
validate trust chain and 59 applications failed to validate hostname matched. We also
attempted MITM attack against applications using self-signed certificates, to reveal the
security problems existing in mobile applications.

3 Measurement Method

In this paper, we focus on the mobile application security in terms of SSL/TLS pro-
tocols. This section describes the data sources and how we performed our measurement
in detail.

3.1 Data Collection

Considering the better representation of all applications, we choose the top 50 appli-
cations on two major operating systems, iOS and Android. We use a spider to obtain
the popular top applications list in the apple app store on Nov 12, 2015. The list
contains applications’ name, ranking, version, etc. We try to obtain the Android top
popular application list at the same time. Because Google has no cooperation with the
Chinese mainland, application rankings in Google play cannot represent the use of
applications in China. So we select three main application markets in China, namely

A Measurement and Security Analysis of SSL/TLS Deployment 191



360 mobile assistant, Tencent yingyongbao and Baidu mobile assistant. Then we
combine the application rankings of these three markets and choose the top 50 popular
applications on Android platform.

The basic method of obtaining the dataset is to capture packets when an application
is used. First, we set up a wireless environment with 360 portable Wi-Fi. Then when
the experimental device connects to the wireless, we capture the traffic flowing through
the virtual wireless network card, which is generated by the device.

It should be noted that we not only capture the entire traffic of applications, but also
keep the specific traffic of “critical behaviors” for further analysis. We define critical
behaviors as operations involving or probably involving users’ sensitive information
when using applications. We list all critical behaviors used in our measurement in
Table 1.

For applications on iOS platform, we capture packets of each application manually.
The experiment device is an apple iPad air1 and its system is iOS 9.1. We try almost all
functions of an application and capture packets with Wireshark and Commview.

For applications on Android device, we achieve a semi-automatic capture. We
develop an application named Simulator. It consists of a client on the computer and a
server on an Android device. We root a Nexus 5 with Android 5.0 system and install
Simulator’s server on it. Simulator can help us capture traffic generated by the device
and send packets to the computer to save automatically. The only thing we have to do
manually is to click the figures corresponding to the functions of each application.

3.2 Measurement System

After the data collection process, we get 1000 “.pcap” files (2000000 packets).
According to the factors we proposed in Sect. 1, we wish to know how an application
deploys SSL/TLS and what parameters its server selects during the SSL handshake. To
address this problem, we design and implement a system.

Table 1. List of critical behaviors.

Critical behavior Sensitive information it may involve

Register User account, password, phone number, email address, user’s personal
information

Login User account, password, phone number, email address
Modify password Old password, new password, phone number, email address
Pay User account, payment password
Upload/Download
file

Document content

Chat on line Conversation content
Send/Receive
emails

Senders and recipients’ email address, content of emails

192 Y. Guo et al.



Figure 1 presents the architecture of the system. In the pcap platform we put
packets which were saved as “.pcap” format into it. These packets will be replayed and
directed to a network card. Then the traffic flows into the TCP parser module. TCP
parser module reassembles the TCP segments and restores the message. When the
complete message is sent to the next module, the SSL parser module will recognize
SSL traffic and discard non-SSL traffic. After that, SSL traffic is further parsed. It will
extract parameters of three phases, Client Hello, Server Hello and Certificate. Param-
eters in Client Hello include client protocol version, host, cipher suites, compression
methods, extensions and so on. So does this in server hello. In certificate phase, the
module extracts the length of certificates, algorithm, issuer, subject and the validity. All
these parameters are saved in “JSON” format and uniquely identified by the four-tuple
(source IP address, destination IP address, source port and destination port). Moreover,
the module extracts the corresponding certificate chain. The JSON files will be further
processed and put into MongoDB database automatically. Finally, the analysis module
does statistics and gives a preliminary statistical result.

3.3 MITM Experiment

As mentioned in Sect. 3.2, besides the parameters of Client Hello and Server Hello, we
also extract certificate details and certificate chains. Generally, if an application uses a
validated certificate issued by a well-known certificate authority (CA) for the server
side, and the client side performs a correct certificate validation, it can protect users
from man-in-the-middle (MITM) attack. Otherwise, it provides opportunities to MITM
attacks. We perform MITM attack experiments to applications whose certificates are
self-signed since they are probably vulnerable to MITM attacks.

Fig. 1. System Architecture. Put the dataset into Pcap platform, then the data is parsed by TCP
parser module and SSL parser module sequentially, generating JSON format files. These files are
imported into the Database and analyzed by the Analysis module in the end.

A Measurement and Security Analysis of SSL/TLS Deployment 193



We exploit SSLsplit [12], an open-source tool for MITM attacks against SSL/TLS
encrypted network connections, to do the experiment. We use 360 portable Wi-Fi to
build a wireless network and configure SSLsplit on Ubuntu. As described in Fig. 2,
when the mobile device connects to the wireless, the traffic is intercepted by SSsplit.
We keep the logs of that using a python script. If there is a non-empty log about 443
TCP ports and the applications on the device can be used normally, that means SSL
traffic is decrypted and the communication has been compromised. In contrast, if there
is no log about 443 TCP port or the size of 443 port log is zero, the application can
resistant MITM attacks.

4 Measurement Results

In this section, the measurement results are presented and analyzed, as well as the
discoveries from the MITM experiment. Meanwhile, some concrete recommendations
on SSL deployment are proposed for application designers. Finally, we summarize our
research and describe the future work.

4.1 SSL/TLS Deployment on Applications

Through the measurement, we discover that the SSL deployment status on applications
can be classified into three types:

a. Deploy SSL/TLS protocols on all critical behaviors. We name this type “all”.
b. Only deploy SSL/TLS protocols on some of the critical behaviors. We name this

type “part”.
c. Not deploy SSL/TLS protocols on any critical behaviors. This type includes two

different cases. If an application uses proprietary protocols to encrypt communi-
cations, it is relatively secure although it does not deploy SSL/TLS protocols.
However, applications using http or other protocols on all critical behaviors may
have serious security problems. We name these two cases “none-security” and
“none-insecurity” separately.

SSLsplit
(MITM)

log

Fig. 2. MITM experiment deployment diagram. The wireless is built by 360 portable Wi-Fi
plugged on the computer, on which SSLsplit is configured as well.

194 Y. Guo et al.



Among top 50 applications on iOS platform, 28 applications deploy SSL/TLS
protocols on all critical behaviors. Three applications only deploy SSL/TLS on part of
critical behaviors, still exposing sensitive data on non-SSL/TLS deployment critical
behaviors. Finally, 19 applications do not deploy SSL/TLS protocols on any critical
behaviors. Nine of them use proprietary protocols, Wechat, QQ, QQ music and other
applications published by Tencent cooperation included. The rest of ten applications
use http protocol on critical behaviors, causing lots of security problems. For example,
MengDian, an e-commerce application, exposes users’ payment password by plaintext.
Table 2 lists applications on iOS platform which leak users’ sensitive data.

SSL deployment on Android platform has similar status with that on iOS. As
shown in Fig. 3, 32 applications deploy SSL/TLS protocols on all critical behaviors.
Six applications only deploy SSL/TLS on part of critical behaviors and 12 applications
do not deploy SSL/TLS on any critical behavior, of which nine use proprietary pro-
tocols and three use http protocol. Table 3 lists applications leaking users’ sensitive
data on Android platform in detail.

In addition, applications with navigation functions such as Baidu map leak users’
accurate location by plaintext in http packets. However, considering the large cost of
deploying SSL/TLS on navigation, we do not define navigation as critical behavior.
But these applications still need to make improvements on protecting users’ location
privacy.

From the results, we can see that there are a large number of applications that
expose users’ sensitive data. Specially, entertainment applications account for a sub-
stantial amount. E-commerce and tool applications with security issues also account for

Table 2. List of applications leaking users’ sensitive data on iOS platform.

Application SSL
deployment

Sensitive data exposed Form (in http
packets)

Baiduyun None-insecurity File uploaded and
downloaded

Ciphertext

Mengdian None-insecurity Payment password Plaintext
Dazhongdianping None-insecurity User name, login password Ciphertext
Kuwo music None-insecurity User name, login password Ciphertext
Kuaishou None-insecurity User name, login password Ciphertext
XimalayaFM None-insecurity Phone number; login

password
Plaintext;
Ciphertext

Kugou music None-insecurity Phone number; login
password

Plaintext;
Ciphertext

Mojitianqi None-insecurity Phone number Plaintext
Souhu vedio None-insecurity Login password Plaintext
QQ mail None-insecurity Some details of email Ciphertext
Qunaer travle Part Login password Plaintext
Fanli Part Login password Plaintext
Mogujie Part Login password Ciphertext

A Measurement and Security Analysis of SSL/TLS Deployment 195



a large number. Application designers should be aware of the significance of deploying
SSL/TLS protocols on critical behaviors and pay particular attention to those categories
with serious security problems.

4.2 SSL Handshake Parameters

On iOS platform, 37.84% applications use TLS 1.0 version. Sina weibo and Qunaer
travel completely use TLS 1.0 version and the others use a mix of TLS 1.0, 1.1 and 1.2
version. 5.4% applications use version 1.1 and 56.76% use version 1.2. There are 12
applications using RC4 encryption algorithm, which is weak and should not be used
anymore [13]. Among them, Sina weibo and ICBC mobile bank use TLS 1.0 version as
well as RC4 algorithm. This combination of parameters has great risks of being
compromised. It is especially dangerous for ICBC mobile bank as a finance applica-
tion. Besides, one application, 12306 railway, uses self-signed certificates.

Fig. 3. SSL deployment of different categories on Android platform

Table 3. List of applications leaking users’ sensitive data on Android platform.

Application SSL deployment Sensitive data exposed Form (in http packets)

Kuwo music None-insecurity User account; login password Plaintext
Souhu video None-insecurity Login password Plaintext
Letv video None-insecurity User account, login password Plaintext
XimalayaFM Part Phone number; login password Plaintext; ciphertext
Baofeng video Part Phone number; login password Plaintext; ciphertext
Baidu map Part User name; login password Plaintext; ciphertext
Baidutieba Part User name; login password Plaintext; ciphertext
Baiduyun Part User name; login password Plaintext; ciphertext
Sina weibo Part Some detail of chat content Plaintext;

196 Y. Guo et al.



On Android platform, 18.75% applications use TLS 1.0 version and the rest use
TLS 1.2 version. There are seven applications using RC4 algorithm and two appli-
cations using self-signed certificates, which are 12306 railway and Iqiyi.

Table 4 shows the selection of SSL handshake parameters on iOS and Android.
Due to many applications use not only one type of encryption algorithm, the sum of
three algorithms in Table 4 is more than 100%.

The result shows that most applications prefer to use TLS 1.2 version and
AES_GCM algorithm, which is a good phenomenon for application security. Thank-
fully, there is no application using SSL 2.0 or 3.0 version on neither of platforms.
However, there are still many applications using the insecure algorithm, RC4.
A combination of low TLS version and insecure algorithm can greatly reduce appli-
cation security. The designers should attach importance to this.

4.3 MITM Experiment Results

In Sect. 4.2 we find that two applications use self-signed certificates, 12306 railway
and Iqiyi. We perform MITM experiments on them, as well as four widely used
applications from e-commerce and finance categories.

First, 12306 railway and Iqiyi can be compromised. When MITM attack is per-
formed, there is no warning of abnormality and we can use the applications as usual.
SSLsplit intercepts their SSL traffic and decrypts it. We can see sensitive data by
ciphertext in decrypted packets.

Secondly, two e-commerce applications, Taobao and Jingdong cannot be com-
promised. SSLsplit hasn’t intercepted their SSL traffic and they can work normally. We
owe it to their use of proprietary protocols. However, there are still serious problems in
Taobao. We can login a user’s Taobao account using cookies in http packets instead of
the user’s account and password.

Finally, the finance application, Jingdong finance, can be compromised as well. But
another finance application, Zhifubao, can resist MITM attack successfully. It warns
the user with a certificate problem notification and prevents users to use it unless there
is no MITM attack any more.

Therefore, the use of self-signed certificates is very dangerous and may be easily
compromised by MITM attacks. Of course a successful resistance to MITM attack
cannot guarantee communication security completely. However, the designers should
avoid using self-signed certificates in applications.

Table 4. Selection of SSL handshake parameters on iOS and Android.

Platform TLS1.0 TLS1.1 TLS1.2 AES_GCM AES_CBC RC4

iOS 37.84% 5.4% 56.76% 75.68% 27.03% 32.43%
Android 18.75% \ 81.25% 71.05% 34.21% 18.42%

A Measurement and Security Analysis of SSL/TLS Deployment 197



4.4 Discussion

With the measurement results in Sect. 4.1, we try to compare the differences of
application security between iOS and Android. However, we find that such a com-
parison is irrelevant. The first reason is that the popular top 50 applications are different
on two platforms. The second reason is that we cannot guarantee an application has the
same version on two top application lists. Without variable controlled, the comparison
is meaningless.

Moreover, the measurement results in Sect. 4.2 are not complete. There are other
correlations between SSL handshake parameters and communication security that we
haven’t taken into account.

Therefore, in the future, we plan to perform a variable controlled experiment to
explore the differences of mobile security in terms of SSL/TLS among different plat-
forms. Besides, we will improve our measurement on SSL handshake parameters and
certificate validation of mobile applications.

5 Conclusion

In this paper, we measure the SSL/TLS deployment of the popular top 50 applications
on iOS and Android platform. A system is designed and implemented to detect whether
an application deploys SSL/TLS protocol and extract the SSL handshake parameters.
The results show that 28% of the applications on iOS platform and 20% on Android
platform have problems in deploying SSL/TLS protocols on critical behaviors, which
can cause severe sensitive data exposure. By analyzing the SSL handshake parameters,
we find that most applications use a high TLS version, but some still use weak algo-
rithms and insecure certificates. Then, we perform MITM experiments against appli-
cations deploying insecure certificates and several representative applications. The
results prove our guess that the former can be easily compromised by MITM attack.
We propose concrete recommendations to designers based on our measurement results.
Finally, we summarize the shortcomings of our measurement and describe the future
work.

Acknowledgments. This work is supported by the Strategic Priority Research Program of the
Chinese Academy of Sciences (No. XDA06030200), Xinjiang Uygur Autonomous Region
Science and Technology Project (No. 201230123), and Beijing Natural Science Foundation
(4164089).

References

1. CNNIC 37th Statistical Report on Chinese Internet. http://tech.sina.com.cn/z/CNNIC37/
2. Ren, J., Rao, A., Lindorfer, M., et al.: Recon: revealing and controlling privacy leaks in

mobile network traffic. arXiv preprint arXiv:1507.00255 (2015)
3. Trummer, T., Dalvi, T.: Mobile SSL failures (2015)
4. He, B., Rastogi, V., Cao, Y., et al.: Vetting SSL usage in applications with SSLINT. In: 2015

IEEE Symposium on Security and Privacy (SP), pp. 519–534. IEEE (2015)

198 Y. Guo et al.

http://tech.sina.com.cn/z/CNNIC37/
http://arxiv.org/abs/1507.00255


5. Sounthiraraj, D., Sahs, J., Greenwood, G., et al.: SMV-hunter: large scale, automated
detection of SSL/TLS man-in-the-middle vulnerabilities in android apps. In: Proceedings of
the 21st Annual Network and Distributed System Security Symposium, NDSS 2014 (2014)

6. Balebako, R., Jung, J., Lu, W., et al.: Little brothers watching you: raising awareness of data
leaks on smartphones. In: Proceedings of the Ninth Symposium on Usable Privacy and
Security, p. 12. ACM (2013)

7. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party tracking
on the web. In: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, p. 12. USENIX Association (2012)

8. Egele, M., Kruegel, C., Kirda, E., et al.: PiOS: detecting privacy leaks in iOS applications.
In: NDSS Network and Distributed System Security Symposium (2011)

9. Levillain, O., Ébalard, A., Morin, B., et al.: One year of SSL internet measurement. In:
Proceedings of the 28th Annual Computer Security Applications Conference, pp. 11–20.
ACM (2012)

10. Pukkawanna, S., Kadobayashi, Y., Blanc, G., et al.: Classification of SSL servers based on
their SSL handshake for automated security assessment (2014)

11. Georgiev, M., Iyengar, S., Jana, S. et al.: The most dangerous code in the world: validating
SSL certificates in non-browser software. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 38–49. ACM (2012)

12. Transparent SSL/TLS interception. http://www.roe.ch/SSLsplit
13. Sheffer, Y., Holz, R., Saint-Andre, P.: Summarizing known attacks on transport layer

security (TLS) and datagram TLS (DTLS) (2015)

A Measurement and Security Analysis of SSL/TLS Deployment 199

http://www.roe.ch/SSLsplit

	A Measurement and Security Analysis of SSL/TLS Deployment in Mobile Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Measurement Method
	3.1 Data Collection
	3.2 Measurement System
	3.3 MITM Experiment

	4 Measurement Results
	4.1 SSL/TLS Deployment on Applications
	4.2 SSL Handshake Parameters
	4.3 MITM Experiment Results
	4.4 Discussion

	5 Conclusion
	Acknowledgments
	References


