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Abstract. Location-based services (LBSs) enable users to sense their
surroundings at the risk of exposing coordinates to attackers. Worse yet,
a strong adversary with arbitrary knowledges probably derive more pri-
vacy especially in continuous query scenarios. To address the problems, a
multi-player privacy game mechanism is proposed to satisfy users’ loca-
tion privacy against adaptive attacks while maximizing utility, build-
ing upon which a heuristic algorithm is applied to iteratively converge
to the optimal equilibrium point. The gain stems from the collabora-
tion of mobile devices: users share information and forward queries for
each other. We evaluate our mechanism against the Bayesian localiza-
tion attack and maximum possible moving speed attack. The simulations
with real map data and mobility traces indicate that our mechanism is
effective to preserve privacy at an acceptable price of utility and time
complexity.

Keywords: Location-based service · Multi-player privacy game · Joint
differential-distortion privacy · Inference privacy · Adaptive attack

1 Introduction

Users are enabled to query the LBS servers for the purpose of searching points
of interest (POIs, like restaurants, stores, etc.), real-time traffic information or
navigation related to the current position, which is observable to attackers [1,2].
Sensitive coordinates may be exposed during the queries. Even worse, the strong
adversary [3,4] with arbitrary knowledges probably traces and models the queries
to predict users’ following behaviors and derive more privacy.

Data confusion is an excellent mechanism for hiding sensitive data by mis-
leading, extra or ambiguous information, resulting in extra extracting overhead.
A number of obfuscation mechanisms have been proposed [5,6]. One of the
most important is Stackelberg Game proposed in [7], where the focus is on two
rivals solved by linear programming. Another important contribution is joint
differential-distortion privacy metric. The privacy achieved through joint met-
ric against optimal attacks is the maximum privacy that can be achieved by
either of these metrics separately. The utility cost is also not larger than what
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either of them imposes. However, it fails to preserve privacy in continuous query
scenarios. When observing queries continuously issued, the adversary may run
overlapping rectangle attack [9], continuous query attack [10] or maximum pos-
sible moving speed attack [11] by linking historical cloaking regions with users’
mobility patterns to infer more privacy than obtained from an isolated query.

Even worse, cooperations between the adversary and LBS providers greatly
weaken users’ privacy. Fortunately, with the rapid advance in mobile devices and
their embedded sensors, users in local area can help each other to enhance privacy
protection without a trusted central server [8]. We enable users to randomly
select neighbors for forwarding queries through a transition probability matrix
P . Thus users are supposed to negotiate with each other over P so that more
privacy can be preserved.

To address the above concerns, we propose a multi-palyer game mechanism
to minimizing users’ utility loss with respect to privacy measured by both infer-
ence and joint differential-distortion privacy metrics, where the adversary runs
adaptive attacks to minimize users’ privacy by inverting users’ strategies. On
the basis, a heuristic algorithm is proposed to iteratively converge to the opti-
mal equilibrium point on P . The simulations with real map data and mobility
traces indicate that our mechanism is effective to preserve privacy at an accept-
able price of utility and time complexity. Additionly, compared with the existing
joint differential-distortion privacy metric, employing both inference and joint
privacy metrics significantly improves the privacy level.

The remainder of this paper is organized as follows. Section 2 defines some
important concepts and states problems. In Sect. 3, an optimal obfuscation mech-
anism is designed for multi-palyer game scenarios, followed by thorough analysis
and evaluation in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Problem Statement

We assume a user wants to protect sensitive information when communicating
with untrusted LBS providers, and refer to his sensitive information as secret,
which can be protected by collaboration. More specifically, the user may asks
others (assuming there’s no spiteful users) to issue LBS queries for him according
to P . Figure 1 illustrates the information flow. The joint probability distribution

Fig. 1. The information sharing framework. A user-secret pair <u, s> denoted by o is
obfuscated into observable o′ by the mechanism according to P . The adaptive adversary
runs inference attack q on o′ and draws a probability distribution over estimates ô.
Distance function d stands for privacy level, and c denotes the utility cost.
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π is estimated by observing the users’ exposed information in the past. Thus
we need to update π whenever any user shares his information. In the following
sections, we define several important concepts and state the problems based on
the information sharing framework.

2.1 Weighed Distance

In fact, a user could bear much smaller distance error if he is at a bus stop or
other POIs with less sensitivity. In order to reduce unnecessary computational
cost, we provide adjustable protection level.

Thus the notion of weighed distance is introduced to provide flexibility. POIs
are classified into several levels from extremely sensitive to not sensitive. The
coefficient of ith level is wi, which is defined by users before entering in or
modified during the game. The weighed distance is calculated as

dwi = wi · d,wi ∈ [0, 1] (1)

The smaller wi is, the more sensitive related POIs are.

2.2 Joint Differential-Distortion Privacy Metric

After an observable o′ was released, the adversary will speculate about the orig-
inal content of the query and get an estimate ô. Therefore we use the distance
between o and ô to define distortion privacy. A user would be less worried about
revealing o ∼ p (o′|o), if the portrait of his secret o in the eyes of the adversary
is an estimate ô with a large distance dw(o, ô).

Given inference algorithm q and specific secret o, the user’s privacy obtained
through a protection mechanism p is computed by

∑

o′
p(o′|o)

∑

ô

q(ô|o′)dw(o, ô). (2)

The expected distortion privacy of the users is
∑

o

π(o)
∑

o′
p(o′|o)

∑

ô

q(ô|o′)dw(o, ô). (3)

A generic definition of differential privacy is adopted in this paper, assuming
arbitrary distance function dε on the users. A protection mechanism is differen-
tially private if for all users u, u′ ∈ U with distinguishability dε(u, u′), and for
all observables o′ ∈ O, we have

p (o′| 〈u, s〉) � εdε (u, u′) · p (o′| 〈u′, s′〉) . (4)

In fact, the differential privacy metric guarantees that, given the observation,
there is not enough convincing evidence to prefer to one user than others.
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2.3 Inference Privacy Metric

Users usually continuously issue queries. The adversary with background knowl-
edges can infer more information aftering comparing adjacent queries. Given
that the protection mechanism p releases o′

t at time t and last output is o′
t−1,

ε-privacy can be saved if the following inequality holds.

q
(
ôt|o′

t, o
′
t−1

)
� eεq (ôt|o′

t) , (5)

where more privacy is preserved when ε getting smaller.

2.4 Utility Cost

Through obfuscation mechanism, users may gain more privacy while incurring
more utility loss. On one hand, it leads to additional communication cost denoted
by cd when user i asks j to forward the query instead of issuing it personally.
On the other hand, we explain the heterogeneity between two secrects by an
r-range query (considering users will most likely issue r-range queries or kNN
queries and both of them are related to circle regions). Figure 2 describes how j
handles the query from i. The mechanism increases the cost of data transmission
and the workload of the result refinement process. All these expenditure are
proportional to the size of superset, depending on the quantity of POIs within
this range. Because there is locally even distribution in POIs, we calculate the
extra refinement cost cr with density and area instead of the quantity of POIs.

cr =
ρ · π · r′2

ρ · π · r2
� (r + dij)2

r2
, (6)

where ρ is density of POIs and dij is the linear distance between ui and uj .
To simplify the problem, we employee function c to denote the overall utility

cost calculated by cd and cr.

Fig. 2. Processing procedure of a range query. Firstly, ui issues a range query with
radius r and selects uj to forward the query. Aftering receiving the original request o,
uj computes a new radius r′ and repacks it into o′. Then LBS providers will return a
result superset after processing o′. Finally, uj needs to extract the exact results what
ui requests and send it back to finish the entire procedure.
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2.5 Objective

The objective is to find the optimal balance between privacy and utility, and
to construct the protecting mechanism that achieves such an equilibrium point.
In other words, it is to find a vector of probability distribution function p∗ to
minimize the overall utility cost, on average,

p∗ = min
∑

i

π(ui)
∑

j,s

π(ui, s)Pijcij (7)

under users’ privacy constraints.
Let dm be the minimum desired distortion privacy level and εm be the differ-

ential privacy budget associated with the minimum desired privacy of the users.
The users’ joint privacy is guaranteed if p satisfies

∑

o′
p(o′|o)

∑

ô

q∗(ô|o′)dw(o, ô) � dm,∀o ∈ O, (8)

p (o′| 〈u, s〉) � εmdε (u, u′) p (o′| 〈u′, s′〉) ,∀u, u′, o′. (9)

Let εm be the desired inference privacy of the users. The users’ inference
privacy is guaranteed if

q∗ (
ôt|o′

t, o
′
t−1

)
� eεmq∗ (ôt|o′

t) ,∀t. (10)

With the objective, the following multi-player game minimizes the overall
cost when satisfying the above constraints.

3 Privacy Game

Definition 1 (Privacy Game). A strategic game consists of

1. A finite set M: the set of players,
2. For each player i ∈ M , a nonempty set Ai: the set of actions available to

player i,
3. For each player i ∈ M , a preference relation �i on A.

�i is defined by a utility cost function ci. For any a ∈ M, b ∈ M , ci (a) � ci (b)
if a �i b.

Each player wants to maximize the objective according to his preference
relation. A user’s action space is all users he can request for forwarding queries.
The adversary’s action space is all possible requesters when observing outcomes
of obfuscation mechanism. Assuming that the obfuscation mechanism is not
oblivious and is available to all players, the adversary takes the upper hand in the
conflict for making decisions after users. Therefore, an obfuscation mechanism
against a fixed attack is always suboptimal. The best obfuscation mechanism
should be designed against any adaptive attack which is tailored to each specific
obfuscation mechanism. After the adversary designs the best inference attack,
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users’ goal is the obfuscation against the adversary. Accordingly, we do not model
any particular adversary but the one who minimizes users’ privacy according to
observation.

Given secret o, we denote a mixed strategy for user ui by

pi =p (·|o) =
{
p (o′

1|o) , p (o′
2|o) , ..., p

(
o′

j |o
)
, ...

}
,

∀o′
j ∈ O, p

(
o′

j |o
)

� 0, and
∑

j

p
(
o′

j |o
)

= 1. (11)

Similarly, let q be the set of the adversary’s mixed strategy of finding out the
original requester when observing o′,

q =q (·|o′) = {q (ô1|o′) , q (ô2|o′) , ..., q (ôj |o′) , ...} ,

∀ôj ∈ O, q (ôj |o′) � 0, and
∑

j

q (ôj |o′) = 1. (12)

p, q and π are available to all players. With these information, users want to
figure out the mutually optimal 〈p∗, q∗〉, which is the solution of the game. In
the following sections, we design the optimal attack q∗ and the best obfuscation
mechanism p∗

i for each user ui against q∗ under his privacy constraints.

3.1 Optimal Strategies

The adversary’s objective is to minimize the users’ privacy, i.e., to minimize error
between the estimation ô and original secret o. The optimal attack is

q∗ = min
q

∑

ô

p∗ (o′|o) q (ô|o′) d (o, ô) , (13)

where q is not only a Bayesian probability inverse, but also considering mobile
pattern attack(MPA) like maximum possible moving speed attack to infer more
privacy in continuous query scenarios.

Against the adversary, users cooperate with each other to minimize overall
cost under the premise of satisfying every user’s privacy. Thus we can formulate
the protection as

p∗ = min
p

∑

o,o′
p (o′|o) q∗ (ô|o′) c (o, ô) (14a)

s.t.
∑

o′
p(o′|o)

∑

ô

q∗(ô|o′)dw(o, ô) � dm,∀o ∈ O, (14b)

p (o′|oi) � εmdε (oi, oj) · p (o′|oj) ,∀i, j, o′, (14c)

q∗ (
ôt|o′

t, o
′
t−1

)
� eεmq∗ (ôt|o′

t) ,∀t. (14d)

Equation (14a) is to minimize overall cost of all queries; constraints (14b), (14c)
and (14d) represent the desired distortion, differential and inference privacy level
of all users.
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3.2 Optimal Equilibrium Point

The solution is to find the mutually optimal 〈p∗, q∗〉 among all pairs. Assuming
that there are n users involved in this game, the time complexity of enumerating
all 〈p, q〉 is O(n3), which is infeasible when n is large enough.

To reduce the complexity, a heuristic algorithm is proposed to iteratively
converge to the optimal equilibrium point. Considering hiring a remote user for
forwarding queries will take much higher utility cost, users prefer to give closer
neighbors a higher forwarding probability. Thus an appropriate initial probability
density function is

f (x, y) =
1√

2πσ2
√

1 − �2
e
− 1

2σ2(1−�2) [(x−y)2+(1−2�)(x−a)(y−b)]
, (15)

where a, b is the coordinate (usually marked with latitude and longitude in
maps) of requester u(a, b), σ and � are parameters for adjusting probability
distribution. The neighbors of u(a, b) are ordered by distance as a sequence:
u(x0, y0), u(x1, y1), ...u(xi, yi), u(xi+1, yi+1)... (where u(x0, y0) is u(a, b)). The
probability of chosing ui, i.e., u(xi, yi), is calculated as

∫∫

D

f (x, y) dxdy,

D : (xi − a)2 + (yi − b)2 � (x − a)2 + (y − b)2 < (xi+1 − a)2 + (yi+1 − b)2 .
(16)

After n users get their own probability transition matrix, the multi-player game
has taken the first step to get the initial P before releasing queries like p(uj |ui).
The adversary runs q(ûi|uj) to find out the original requesters. Afterwards,
obfuscation mechanism will modify P by

P ′ (uj |ûi) =
(

1 − 1
n

)
q (ûi|uj) P (uj |ûi) , (17)

if uj ’ secret is exposed to the adversary. Players repeat the above steps to con-
verge to the equilibrium point, with convergence rate determined by n and q.

4 Performance Evaluation

In this section, the effectiveness of our proposed mechanism are experimentally
evaluated under several system settings, with data of Beijing that contains vari-
ous categories of POIs [12]. To the best of our knowledge, due to privacy and com-
mercial interest reasons, no real suitable data sets have been publicly released.
Therefore, in most of our experiments, we randomly generate a group of users as
players. In addition, we adapt the real devices data to validate the mechanism.
There is no inference attack being specified, but the maximum possible moving
speed attack is employed in the experiments to illustrate the crucial problems.
The evaluation metrics include privacy level, utility cost and time cost. All algo-
rithms are implemented with Matlab and run on a desktop PC with Intel Core
i3 2.53 GHz processor and 8 GB memory.
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4.1 Case 1: Impacts of POI Density

This section examines the impacts of POI density, while the other parameters
keeping constant. Let a group of users experience LBSs in three different dis-
tricts, where Haidian is downtown with the highest POIs density, and Yanqing
is suburban with the lowest density. We compare the utility cost and privacy of
users located in the three districts. In Fig. 3, it is interesting to observe that users
can achieve more privacy at lower utility cost when being in Haidian. However,
staying in Yanqing probably results in much more expensive cost when satisfying
the same privacy level, which means users in districts with higher POIs density
can preserve much more privacy with the same cost limitation. That is to say,
our proposed mechanism performs better in districts with higher POIs density,
though it protects at least 79% privacy in the suburbs.

Fig. 3. Impacts of POI density.

4.2 Case 2: Impacts of Privacy Level

In this section, we investigate the impacts of privacy level from two aspects:
increasing the average minimum desired distortion privacy level dm and inference
privacy budget εm. The differential privacy metric εm is set as 0.05 for being
a static metric with little impacts on indicators. In addition, we analyse the
impacts of the group size on indicators, including privacy, utility cost and time
cost. Figure 4 depicts impacts of different privacy level restrained by dm, εm and
εm, with POIs data of Shunyi district. Increasing dm by 0.4 km has much deeper
influence than decreasing εm by 0.3. We are glad to see the average privacy of
50 users reaches up to 96% when dm = 0.5 km, εm = 0.05 and εm = 0.1. With
group size growing from 5 to 50, the average privacy increases by 30%, while
utility cost increases at a low speed. Nevertheless, the exponential growth in
initialization time raises concerns about choice on group size, though 18 ms
might seem to be acceptable. From the analysis, we realize that gathering 20
devices into a group will incur relatively low utility cost and initialization time
consuming under privacy constraints.

4.3 Case 3: Tracing Real Devices

As mentioned earlier, no real suitable data sets are publicly available. Thus we
develop a software tool to collect trajectory data from 50 real mobile devices and
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Fig. 4. Impacts of privacy level.

take the data as input to evaluate our mechanism. Figure 5 indicates that our
obfuscation mechanism can provide a better protection when employing both
inference and joint privacy metrics by increasing about 10% privacy. We believe
that such a mechanism would be acceptable in terms of privacy level of mobile
users.

0 5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Device ID

Pr
iv

ac
y

Inference and Joint Privacy
Joint Privacy

Fig. 5. Tracing data of 50 real devices.

5 Conclusions

This paper contributes to the extensive field of research that concerns obfusca-
tion mechanisms, e.g., in the context of privacy metric, attack algorithm and
anonymity in distributed mobile systems without a trusted central server. The
proposed obfuscation mechanism is able to preserving users’ location privacy
against adaptive attacks when maximizing utility. Another important contribu-
tions is the optimization with respect to both joint differential-distortion and
inference privacy metrics, as well as weighed distance. The simulations with real
map and mobility traces corroborate that it is effective to preserve privacy at
an acceptable price of utility and time cost. Additionally, it proves that users
in districts with higher POIs density can preserve much more privacy with the
same cost limitation.
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