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Abstract. Nowadays, the exponential growth of smartphones creates
a potential paradigm of mobile crowdsensing. A sensing task origina-
tor accomplishes its sensing data collection work by publishing them on
crowdsensing platforms. All the platforms want to attract the task origi-
nator to use their services in order to make higher profit. Thus, the issue
of competition arises. In this paper, we study the incentive mechanism
based on pricing strategy for crowdsensing platforms. We formulate the
competition among platforms as a dynamic non-cooperative game and
use a multi-leader Stackelberg game model, where platforms are leaders
and the task originator is the follower. In the real world, it is difficult for
a platform to know the strategies of others. So we propose an iterative
learning algorithm to compute its Nash equilibrium. The iterative learn-
ing algorithm is that each platform learns from its historic strategy and
the originator’s response. Through extensive simulations, we evaluate the
performance of our incentive mechanism.
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1 Introduction

Nowadays smartphones are highly ubiquitous. There were over 6.8 billion mobile
phones in use all over the world in 2013 [1]. Meanwhile, with the technological
advances, smartphones are programmable and equipped with a set of useful
embedded sensors, such as GPS, accelerometer, microphone, camera and so on.
These sensors can record a variety of sensing data. Therefore, the proliferation of
smartphones provides facilities for applying their sensing data in a wide variety
of domains, such as transportation, medical research and social networks, which
emerges a new frontier called mobile crowdsensing.

As a special form of crowdsourcing [2], mobile crowdsensing aims to pro-
vide a mechanism to involve participants from the general public to effectively
contribute and utilize sensing data from their mobile devices in solving specific
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problems in collaborations [3]. Crowdsensing leverages human intelligence to col-
lect sensing data by employing mobile devices. It is obvious that crowdsensing
has much significant benefit, such as overcoming the limits of space-time, low
cost and so on.

In the real world, a mobile crowdsensing system generally consists of three
parts. The first part is sensing task originator who initiates many mobile crowd-
sensing tasks. The second part is crowdsensing platform which is an intermedi-
ary between smartphone users and the sensing task originator. Meanwhile, the
platforms provide some related services, such as pushing crowdsensing tasks to
smartphone users. The last part is the set of smartphone users who provide sens-
ing data according to crowdsensing task requirements published on platforms.

A key factor for the success of crowdsening lies in the users’ participation
in data sensing activities. A number of works have studied the incentive mecha-
nisms to motivate users to participate in crowdsensing. In [4], Reddy et al. inves-
tigated how different payment schemes affect user participation. In [5], Danezis
et al. developed a seal-bid second-price auction to motivate user participation.
In [6], Yang et al. studied two types of incentive mechanisms for a crowdsen-
ing system: crowdsourcer-centric incentive mechanisms and user-centric incen-
tive mechanisms. They considered that crowdsourcer resided in the cloud and
consisted of multiple sensing servers. In [7], Peng et al. studied the price com-
petition of multiple crowdsourcers. Multiple crowdsourcers competed with each
other to purchase crowdsourcing service from smartphone users. Koutsopoulos
[8] developed a random incentive mechanism to minimize the total payment
to the participating users while guaranteeing certain quality of service level.
Although the above papers have studied different incentive goals or considered
different objectives, they all just studied the relationship between crowdsourcers
and smartphone users.

In this paper, we focus on the relationship between crowdsensing platforms
and the sensing task originator who demands on sensing data. The above papers
considered that crowdsensing platforms and sensing task originators as a whole
named crowdsourcer. We consider an actual scenario where multiple crowdsens-
ing platforms compete for a sensing task originator by pricing strategy. An incen-
tive mechanism is designed for crowdsensing platforms which have absolute con-
trol over the service pricing strategy. We formulate the price competition among
platforms as a dynamic non-cooperative game, where each platform indepen-
dently decides its own price aiming at highest profit. Therefore we model the
incentive mechanism as a multi-leader single-follower Stackelberg game and pro-
pose an iterative learning algorithm to achieve the Nash equilibrium among
platforms as their optimal pricing strategy profile.

The rest of this paper is organized as follows. Section 2 presents the system
model and utility functions of platforms and task originator. In Sect. 3, we model
system as a Stackelberg game and proposed an algorithm to calculate Nash
equilibrium. Simulation results are presented and analyzed in Sect.4. Finally,
Sect. 5 concludes the paper.
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2 System Model

The system consists of many crowdsensing platforms which provide sensing data
collection services, and a sensing task originator with many crowdsensing tasks.
Using services of platforms incurs costs, such as reward for smartphone users,
platform maintenance costs and so on. Hence platforms look forward to getting
some return for their services. Meanwhile, the sensing task originator makes its
crowdsensing tasks assignment strategy considering payment and return aiming
at maximizing its utility. We assume that platforms belong to different com-
panies, so they are selfish and rational that just want to maximize their own
utility.

Sensing Tasks

E' Assignment Stratesy -

Fig. 1. System model

In our model, there is just one sensing task originator with M crowdsensing
tasks and N crowdsensing platforms as shown in Fig. 1. The crowdsensing plat-
forms first announce their own prices of data collection respectively to attract
the sensing task originator to use their services. According to the prices that
platforms announced, sensing task originator maximize utility by making its
sensing tasks assignment strategy.

Let the price strategy profile of crowdsensing platforms be P =
(p1,p2,- - ,pjs- - -pn). The variable p; represents the unit price of data on plat-
form j. The sensing task originator’s sensing tasks assignment strategy profile
is X = (w1, 22, -+ , &4, - Ty), Where x; = (41, Ti2, -+, Tij, - - TinN ). T; 18 total
amount of data in task i and x;; means amount of data of task ¢ collected in
platform j.

According to our model and decision variables, we define the following utility
functions:

1. The total utility of the sensing task originator is
M
F(P,X) =Y fi(P,z:), (1)
i=1
fi(P,x;) is utility of crowdsensing task ¢ as

N N
fi(Py ;) = a;log(1 + Zﬁjxij) - ijl”ij, (2)
j=1

Jj=1
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Where o; is utility parameter of task ¢ and §; is data quality parameter of
platforms j.
The utility function of sensing task i is comprised of two parts. The first part
is the tasks’ diminishing return on the data collected from platforms. The
second part is total payment for platforms.

2. The utility of crowdsensing platform j is

M
9:(p5, X) =p; Y wij, (3)
i=1
which is total return getting from each crowdsensing task and parameter Cj
M
means the resources quantity of platform j, requiring > z;; < Cj.
i=1

3 Optimal Pricing Strategy Dealing with a
Non-cooperative Game

Our incentive mechanism for crowdsensing platforms is based on optimizing their
pricing strategies. We model our crowdsensing platforms-task originator incen-
tive mechanism as a multi-leader single-follower Stackelberg game [9] and Nash
Equilibrium is the solution of the game. There are two stages in this mechanism:
in the first stage, crowdsensing platforms announce their own unit prices; in the
second stage, the sensing task originator makes crowdsensing tasks assignment
strategy to maximize its own utility. Therefore the crowdsensing platforms are
leaders and the sensing task originator is the follower in this Stackelberg game.
Both platforms and sensing task originator are players.
Then we define the equilibrium concepts.

Definition 1 (Nash equilibrium): A set of strategies profile (pi,p3, - ,py) is
the Nash equilibrium of the non-cooperative game among platforms if for any
platform j,

9; (P}, ;) = 9i(pj, ™)

In our model, there exists a non-cooperative game among platforms. In the
crowdsensing platform level, Nash equilibrium is that any platform can not
improve its own utility unilaterally, if the other platforms’ strategy profiles are
fixed.

In order to make the optimal pricing strategy at Nash equilibrium of crowd-
sensing platforms, the platform needs to know other platforms’ utility functions
and the sensing task originator’s responding strategy. But these information may
not be obtained in real world. So each platform can just adjust its own strategy
by observing the reaction of other platforms and the sensing task originator,
eventually reach a steady state.

Based on the above reasons, an iterative learning algorithm is proposed to
achieve the Nash equilibrium. Assuming that pricing strategy profile of crowd-
sensing platforms at ¢ moment is P(t). Then the sensing task originator needs to
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adjust its sensing tasks assignment strategy X (¢) to maximize its utility. After
sensing task originator utility reaches maximum, crowdsensing platforms adjust
their price strategy P(t+1) at t+1 moment by learning from its historic strategy
P(t) and sensing task originator’s strategy X (¢). The price iterative equation for
platform j is

D500 X(0)
dp;(t)

where, v; > 0 is platform pricing strategy adjustment step length, and

pi(t+1) =p;(t) +v; )s (4)

99, (P, X (1) o, 95l i)+, 1,X(®) = g5 ([--,p; () — &, [, X (#)) (5)
Op;(t) 2e )

Thus the whole iteration process loop illustrated as follow:

Algorithm 1. Iterative Learning Algorithm
Initialize the v;,Vj =1,2,.-- | N.
2: for crowdsensing platforms do
Initialize platform prices P = (p1,p2,- - ,PN);

4: end for
while maximum iterations do
6: for each crowdsensing platform j do
Update p; by equation (4) and (5)
8: end for
Update sensing task assignment strategy X*
10: Calculate the utility of each crowdsensing platform

end while
12: for each crowdsensing platform j do
Calculate its best responding pricing strategy curve
14: end for
Calculate intersection of best responding pricing strategies among platforms as
optimal pricing strategy
Ensure: optimal pricing strategy p* for platforms

In the iterative learning algorithm, task originator makes its optimal strat-
egy X* to obtain the maximum utility given platforms pricing strategies in
Algorithm 1 row 9. The optimization problem can be written as follow:

m)?XF(X, P)
X>0
= 6
st.{ M ©)
zij < Cj
i=1

To solve this optimization problem, Genetic Algorithm (GA) and Newton
method is applied. Genetic Algorithm [10] is a powerful stochastic algorithm
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based on the principles of nature selection and natural genetics. Genetic Algo-
rithm maintains a population of individuals which also called strings representing
candidate solutions to the optimization problems, and probabilistically modi-
fies the population by some genetic operators, for example, selection, crossover,
mutation, with the intent of finding a near-optimal solution to the problem.

But in some cases, its convergence rate is slow. This is mainly because of
the parameter selection in Genetic Algorithm. For instance, if initial population
size of individuals is too large, the algorithm takes up a lot of system resources
leading to low convergence rate. When it is too small, optimal process terminates
in sub-optimal solution. There is still no effective method for selecting these
parameters.

To improve the calculation accuracy and convergence rate of optimization
process, we adopt a typical method that using Genetic Algorithm to obtain a
rough solution first, and then using Newton method to calculate precisely based
on the rough solution. This process is relatively stable. It effectively avoids the
convergence in the local optimal solution, and ensures enough precision.

4 Simulations and Discussions

In this section, we present simulations with Matlab to evaluate the performance
of the incentive mechanism. Our performance metrics includes (a) optimal pric-
ing strategies of crowdsensing platforms; (b) utility of platforms; and (c) utility
of sensing task originator. In order to facilitate simulation, there are just two
crowdsensing platforms called platform 1 and platform 2 in our simulation. But
these results can be easily extended to the model having multiple platforms.

4.1 Nash Equilibrium Between Crowdsensing Platforms

Set data quality parameter 81 = 0.6, 8o = 0.7, quantity of resource for platforms
C7 = Cy = 50, number of crowdsensing tasks M = 5 and utility parameter a of
sensing task originator is uniformly distributed over [1,10].

Figure 2 shows the utility of platforms as a function of their own price respec-
tively. We observe that utility curves of both crowdsensing platform 1 and plat-
form 2 first increase and then decrease as their own price becomes higher. When
price of the crowdsensing platform is too high, sensing task originator is willing
to complete their crowdsensing tasks on the other platform leading to little util-
ity. While the price of crowdsensing platform is too low, even if the number of
tasks platform completed is saturated, its utility is still low. The best response
is the price which results in the highest utility when the other is fixed.

Figure 3 shows the Nash equilibrium between platform 1 and platform 2.
These two curves mean the best responding pricing strategy of the two platforms
respectively. Thus the intersection of two curves is Nash equilibrium, as well as
the optimal pricing strategy, because in this intersection both platforms achieve
their optimal utility and no one can improve its own utility unilaterally.
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Fig. 3. Nash equilibrium between platform 1 and platform 2, when 8; = 0.6, §2 = 0.7

4.2 Optimal Pricing Strategy of Crowdsensing Platforms

We show the impact of data quality parameter 3, number of crowdsensing tasks
M and range of utility parameter o on the optimal prices of crowdsensing plat-
forms respectively in Figs.4 and 5.

In Fig.4, We observe that the optimal price of platform 1 decreases and
platform 2 increases as the data quality of platform 2 improves. Both trends
gradually become steady. This is because when the quality of data improves,
sensing task originator’s demand of data will decrease. It weakens influence of
quality data on platforms’ optimal price. Then we compare the changes in opti-
mal price between different quantities of platform resources. We assume these
two platforms having the same quantity of resources. It is obvious that the fewer
quantity of platform resources is the more considerably the prices vary. This can
be explained by the reason that when the quantity of platform resources is few,
it is a seller’s market. Thus platforms have initiative and their quality of data is
influential.

In Fig. 5(a), it can be observed that both optimal prices of platforms increase
with sensing task originator’s number of tasks M and gradually becomes steady
as M becomes larger.
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Fig. 5. M and « impact on optimal prices of platforms.

In Fig.5(b), we observe that when the range of tasks’ utility parameter «
increases, the optimal prices for both platforms increase almost linearly. The
reason is that increment range of utility parameter means the sensing task orig-
inator can get more return from the data collected by platforms, thus the price
it can afford is higher.

4.3 Optimal Utility of Crowdsensing Platforms

We study the effect of data quality parameter 8 on the crowdsensing platform
utility in diverse quantities of platform resources situation in Fig. 6. We assume
that there are same quantities of resources between platform 1 and platform 2.
The results show that the optimal utility of b platforms varies little in different
quantities of resources, as data quality of platform 2 increases. And the increment
of resource quantities just makes a slightly improvement of the platforms’ utility.
The reason is that both quantities of resources for platforms increase, leading to
reduction of their optimal prices.



146 X. Dong et al.

=

T —%— C1=C2=50, g1"
— %= -C1=C2=50, g2
//’ —&— C1=C2=100,g1"
Sg” ©--C1=C2=100g2’
—&—C1=C2=15091"
— A -C1=C2=150,g2"

Optimal Utility of Platforms

0.1 02 03 04 05 06 07 08 09 1
Data Quality , of Platform 2

Fig. 6. Optimal utility of platforms versus (2 for different C' , 81 = 0.6

4.4 Optimal Utility of Sensing Task Originator

Then we explore the impact of data quality parameter S and number of crowd-
sensing tasks M on optimal utility of sensing task originator.

In Fig.7(a), it is obvious that the sensing task originator’s optimal utility
increases almost linearly as data quality of platform 2 improves. The growth rate
of sensing task originator utility is basically same in different source situation.
The reason for diminishing increment is that when the quantity of resource
grows to a certain degree, data demand of sensing task originator approaches to
saturation.

8

Optimal Utility of the Task Originator
®
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Fig. 7. Impact of data quality parameter 8 and number of crowdsensing tasks M on
optimal utility of sensing task originator

In Fig. 7(b) sensing task originator optimal utility raises diminishingly as the
number of crowdsensing tasks M increase. It can be explained that although
number of tasks increases, the quantity of resources is fixed. Therefore sensing
task originator utility raises to a certain degree and becomes steady.
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5 Conclusion

In this paper, we study the incentive mechanism for crowdsensing platforms
that maximizes their utility through pricing strategy. The situation that multi-
ple crowdsensing platforms compete for providing data collection service for the
sensing task originator is considered. A dynamic non-cooperative game, specif-
ically a Stackelberg game is used to model this situation. For the reason that
a crowdsensing platform may not know the strategies of others which are unre-
vealed information, we propose an iterative learning algorithm to find the opti-
mal pricing strategy profile for platforms at Nash equilibrium. We also evaluate
the performance and analyze influence factors of pricing strategy of crowdsensing
platforms.
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