
Early Training in Programming: From High
School to College

Ugo Solitro1(B), Margherita Zorzi1, Margherita Pasini2,
and Margherita Brondino2

1 Department of Computer Science, University of Verona, Verona, Italy
{ugo.solitro,margherita.zorzi}@univr.it

2 Department of Philosophy, Education and Psychology, University of Verona,
Verona, Italy

{margherita.pasini,margherita.brondino}@univr.it

Abstract. Informatics is recognized as a fundamental discipline in edu-
cation at all levels. It is also an indispensable subject for scientific and
technical studies. Some abilities connected to informatics learning (com-
putational thinking) has being considered to provide “fundamental skills
for everyone”. Programming or, more generally, the ability of solving
problems by algorithmic methods is one of these skills. In Italy, many
scientific degree courses offer, at the first year, at least an introduc-
tory course in programming. Digital expertize and a basic attitude to
computational thinking are in general expected. The present study, has
been conducted at the University of Verona, in the context of the course
Programming with laboratory of Applied Mathematics curriculum. We
focus on first period of lessons, when the fundamentals of programming
are introduced. Most of the students come from secondary schools, in
particular Liceo, a secondary school with emphasis science or humani-
ties, and where the role of informatics is in general not central. So, an
academic course in programming can be a difficult task for students.
In this paper, we analyze how the “cultural” background influences the
learning of programming and the performance of students.

Keywords: Computational thinking · Programming · Coding ·
Extreme apprenticeship · Motivation

1 Introduction

The relevance of informatics as an autonomous discipline and the computational
thinking as a general methodology has been pointed out in several papers and
reports [6,9,16].

In the last twenty years, the importance of information technology in school
courses has been emphasized also in the Italian educational landscape: this atten-
tion involves school courses at all levels, from primary school to University. The
introduction of informatics in Italian school has a long history. In the Nineties,

c© ICST Institute forComputer Sciences, Social Informatics andTelecommunicationsEngineering 2017

O. Gaggi et al. (Eds.): GOODTECHS 2016, LNICST 195, pp. 325–332, 2017.

DOI: 10.1007/978-3-319-61949-1 34



326 U. Solitro et al.

an experimental project called PNI - Piano Nazionale dell’Informatica (in Eng-
lish, Computer Science National Project) has been proposed and implemented
as a pedagogical avant-garde: the main objective was to align Italian curricula
to European and American educational trends, in which “technological skills”
have a central role.

However, the effective presence of informatics in different courses and levels is
heterogeneous, with an emphasis on digital literacy and the use of digital tools.
Even if the role of computer science education has been largely recognized (recent
Italian ministerial recommendations are clearly ITC-oriented), the acceptance of
the “digital culture” as a central subject of didactical curricula still encounters
some obstacles. Many difficulties are related to the lack of resources and teachers’
specific educational training. Also, computer science curricula for high school
are diversified; and, with only a few exceptions, informatics is still treated as
a “subordinate science”. Consequently, the majority of students face academic
courses without a solid preparation in principles of informatics. Regarding that
issue, a crucial and interesting case study is represented by first-level courses of
programming [9,11].

Programming abilities and computational thinking involve many skills, such
as, for instance: reading comprehension, critical and systemic thinking, cog-
nitive meta-components identification, planning and problem solving, creativ-
ity and intellectual curiosity, mathematical skills and conditional reasoning,
procedural thinking and temporal reasoning, analytical and quantitative rea-
soning, as well as analogical, syllogistic and combinatorial reasoning. Teach-
ing programming at university, particularly in introductory courses, seems to
be a challenge. A promising perspective in promoting computational thinking
is the Cognitive Apprenticeship (CA) learning model, a method inspired by
the apprentice-expert model in which skills are learned within a community,
through direct experience and practice guided by an expert of the subject [7].
An extension of the Cognitive Apprenticeship model, eXtreme Apprenticeship
(XA), was proposed in introductory programming courses by a team of Uni-
versity of Helsinki [14,15]; XA emphasizes communication between teacher and
learners during the problem-solving process. This methodology has been suc-
cessfully applied also in different contexts: operating systems [2,3], databases
[4], mathematics [8] and, more recently, in secondary schools. A “light” version
of XA technique has been introduced for students in Applied Mathematics and
Computer Science at the University of Verona [13].

Students’ cultural background could impact the effectiveness of teaching pro-
gramming. This cultural background, mainly connected with the educational
experience during the secondary school, could also define in some way the possi-
bility to achieve good results. Some authors classify students as science-oriented
and humanities-oriented according to their approach to problem solving [1].
Students can also be classified on the bases of the teaching method adopted
(traditional teaching method, cognitive apprenticeship, extreme apprenticeship
and so on). In this paper we analyze early performances in learning programming
of students enrolled at the first year of the course in Applied Mathematics. The



Early Training in Programming 327

aim of this pilot study is to verify the impact of different educational experiences
on students’ achievement measured by a partial test covering the first part of the
course Programming with Laboratory. A subset of students was trained with a
traditional teaching methods, whereas a second subset was trained using XA.

2 Method

The sample consisted of 140 students (51.4% males, mean age 20.3) enrolled at
the first year of the bachelor degree in Applied Mathematics in Verona through-
out the last three academic years. The traditional teaching methodology of the
past years has been updated in the current course introducing the eXtreme
Apprenticeship (XA), so that some students of the current year in the sample
(68,6%) was trained with a traditional teaching method and the others with XA
teaching method. Concerning students’ cultural background, participants came
from different kind of schools. Most of them (59,3%) are from a secondary school
which emphasizes mathematics and sciences. Another group of students (27,1%)
come from technical and professional schools, with different curricula emphasiz-
ing technical and professional skills. The third group, the smallest one (13,6%),
comes from humanistic studies (humanities, language and social sciences high
schools). In order to preliminarily evaluate students’ previous skills, we asked
them to fill out a questionnaire to collect informations about their school expe-
rience in informatics. We can qualitatively describe the result in the following
way: in most cases (about 75%) informatics was not a subject of the last year and
in general was not treated autonomously; about 50% of them (think to) know
the notion of algorithm and programming language, but the great majority have
no relevant experience in programming in a specific language.

2.1 Research Design and Data Analysis

At the end of the initial period of the course Programming with Laboratory, stu-
dents took a partial exam (in the following, test) considered as part of the final
examination. The following parameters are considered for the evaluation: correct-
ness of the solution, logical structure and good programming practices. The test
consists of two parts: a general theoretical section (TH), in which the knowledge
of fundamental notions (e.g. the definitions of compiler, interpreter, specifica-
tion...) are verified; a practical, programming section (PR), where students must
solve a few exercises of increasing difficulty about programming competences
and problem solving skills. The evaluation of the test produced a quantitative
score, which was normalized in the range 0–1 to allow the comparison among
the three different groups of cultural background and the comparison between
the theoretical and the programming outcomes. At the end, two different-even if
related-quantitative dependent variables were considered: theoretical score (TH),
and programming score (PR). A quasi-experimental design was used, with two
between-subject factors: 1. educational background (with three conditions: sci-
ence, humanities, and technical/professional); 2. the teaching method (with two



328 U. Solitro et al.

conditions: XA and TT), and the two learning outcomes as the dependent vari-
ables (TH and PR). A mixed 3X2X2-ANOVA (Fisher’s ANalysis Of VAriances,
see e.g. [5]) were run, with the school group as a three-level between-subject
factor, the teaching method as a two-level between-subject factor, and the two
different scores as the within-subjects factor (hence the classification 3X2X2).

In the following, we will adopt the standard general form to write ANOVA
results, i.e. F (a, b) = c; p • d, where: • ∈ {<,>,=}; the ratio c of the F-statistic
depends on a, b, that represent the degrees of freedom of the between-subject
variables and of the within-subject variables respectively; p is the p-value and
d is a threshold (traditionally set to .05). When p < d, observed data can be
considered statistically meningful. Another statistical measure we use is the effect
size, a standard measure that can be calculated from any number of statistical
outputs. Informally, effect size expresses the mean difference between two groups
in standard deviation units, and will be denoted as η2. For further details, see [5].

2.2 Results

A mixed 3X2X2-ANOVA was run to check for statistical differences among
groups’ means. The main effect of the secondary school was significant
(F(1,134) = 3.424; p < .05) even if with a small effect size (η2 = .05), with stu-
dents from scientific high school performing better than technical/professional
students, and than humanities students, which showed the worst overall

Fig. 1. Average test scores considering the two learning outcomes (TH and PR) for the
three school groups (sciences, technical/professional, humanities) in the whole sample.



Early Training in Programming 329

performance. The main effect of the teaching method was also significant
(F(1,134) = 20.979; p < .001) with a medium effect size (η2 = .14): students
trained with XA performed better than students trained with the traditional
teaching method. The main effect of test (F(1,134) = 60.003; p < .001) with a
medium effect size (η2 = .31) showed students performed better on the theoretical
part than in the programming part. An interesting result concerns the interaction
between the kind of learning outcomes and the secondary school (F(1,134) = 3.68;
p < .05) even if with a small effect size (η2 = .05). This effect is showed by Fig. 1,
which represents the average test score considering the two learning outcomes
(TH and PR) for the three groups (sciences, technical/professional, humanities).
For all the three groups the programming part is more difficult than the the-
oretical one, but for students from humanities schools this gap was higher. No
other results were statistically significant, but an interesting trend is shown by
Figs. 2 and 3, showing learning outcomes in TH and PR in the three different
school groups distinguished by teaching method. XA seems more effective for
students coming from humanities high school, mainly for the theoretical test.
Students coming from technical/professional schools showed the lowest level of
benefit from the XA teaching methodology.

Fig. 2. Average test scores considering the two learning outcomes (TH and PR) for
the three school groups (sciences, technical/professional, humanities) for students with
XA.



330 U. Solitro et al.

Fig. 3. Average test scores considering the two learning outcomes (TH and PR) for the
three school groups (sciences, technical/professional, humanities) for students trained
in the traditional learning method.

3 Conclusions and Future Work

Programming abilities require a set of knowledges and skills related to the so-
called computational thinking, whose importance has been largely recognized.
Teaching programming has proved to be a critical task, and becomes particularly
interesting and challenging when this matter is proposed to students of non-
vocational curricula. Students at the beginning of their university studies come
from different educational backgrounds, and some of the skills connected with
computational thinking could be differently owned by students on the basis
of their secondary school experience. For instance, some of these skills could
be less familiar to humanities-oriented learners than to their sciences-oriented
colleagues.

The aim of this pilot study was to verify the impact of different educa-
tional experiences on students’ performance in developing programming abilities.
Results highlighted that human-oriented learners showed more difficulties than
sciences-oriented colleagues, more in practical tasks than in theoretical ones.
Is this gap insurmountable? A promising perspective to face this issue seems
to be the use of appropriate teaching methodology, as for example the Cogni-
tive Apprenticeship learning model, and particularly eXtreme Apprenticeship,
a learning model which emphasizes communication between teacher and learn-
ers during the problem-solving process. In the present pilot research, the gap



Early Training in Programming 331

between humanities-oriented and sciences-oriented students has been reduced in
the group who attended programming courses with XA.

An improved of teacher and peer-wise support combined with automated
scaffolding [10] and an enhancement on the motivation side [12] could produce
better results.

Further studies are needed. First we aim to verify whether this result in this
small sample can be replicated and generalized. Second, it will be interesting to
enrich the ANOVA with further subjects such as genres and high-school final
evaluation. Finally, we plan to better understand the underlying mechanism
which allows this improvement in computational thinking.

References

1. Billington, J., Baron-Cohen, S., Wheelwright, S.: Cognitive style predicts entry into
physical sciences and humanities: questionnaire and performance tests of empathy
and systemizing. Learn. Individ. Differ. 17(3), 260–268 (2007)

2. Del Fatto, V., Dodero, G., Gennari, R.: Assessing student perception of extreme
apprenticeship for operating systems. In 2014 IEEE 14th International Conference
on Advanced Learning Technologies (ICALT), pp. 459–460. IEEE (2014)

3. Del Fatto, V., Dodero, G., Gennari, R.: Operating systems with blended extreme
apprenticeship: what are students’ perceptions? Interact. Des. Archit. J. (IxD&A),
special issue (2015)

4. Del Fatto, V., Dodero, G., Lena, R.: Experiencing a new method in teaching data-
bases using blended extreme apprenticeship. Technical report (2015)

5. Freedman, D.A.: Statistical Models. Theory and Practice, 2nd edn. Cambridge
University Press, Cambridge (2009)

6. Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A.,
Boyle, R., Mendelson, A., Stephenson, C., Ghezzi, C., et al.: Informatics education:
Europe cannot afford to miss the boat. ACM (2013)

7. Ghefaili, A.: Cognitive apprenticeship, technology, and the contextualization of
learning environments. J. Educ. Comput. Des. Online Learn. 1–27 (2003)

8. Hautala, T., Romu, T., Rämö, J., Vikberg, T.: Extreme apprenticeship method
in teaching university-level mathematics. In: Proceedings of the 12th International
Congress on Mathematical Education, ICME (2012)

9. Katai, Z.: The challenge of promoting algorithmic thinking of both sciences-and
humanities-oriented learners. J. Comput. Assist. Learn. 31(4), 287–299 (2015)

10. Pärtel, M., Luukkainen, M., Vihavainen, A., Vikberg, T.: Test my code. Int. J.
Technol. Enhanc. Learn. 2 5(3–4), 271–283 (2013)

11. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin,
M., Paterson, J.: A survey of literature on the teaching of introductory program-
ming. In: Working Group Reports on ITiCSE on Innovation and Technology in
Computer Science Education, ITiCSE-WGR 2007, pp. 204–223. ACM, New York
(2007)

12. Solitro, U., Pasini, M., Brondino, M., Raccanello, D.: The challenge of learning to
program. In: PPIG 2016, September 2016



332 U. Solitro et al.

13. Solitro, U., Zorzi, M., Pasini, M., Brondino, M.: A “light” application of blended
extreme apprenticeship in teaching programming to students of mathematics.
In: Caporuscio, M., De la Prieta, F., Di Mascio, T., Gennari, R., Rodŕıguez,
J.G., Vittorini, P. (eds.) Methodologies and Intelligent Systems for Technology
Enhanced Learning. AISC, vol. 478, pp. 73–80. Springer, Cham (2016). doi:10.
1007/978-3-319-40165-2 8

14. Vihavainen, A., Luukkainen, M.: Results from a three-year transition to the
extreme apprenticeship method. In: 2013 IEEE 13th International Conference on
Advanced Learning Technologies (ICALT), pp. 336–340. IEEE (2013)

15. Vihavainen, A., Paksula, M., Luukkainen, M.: Extreme apprenticeship method in
teaching programming for beginners. In: Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, pp. 93–98. ACM (2011)

16. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

http://dx.doi.org/10.1007/978-3-319-40165-2_8
http://dx.doi.org/10.1007/978-3-319-40165-2_8

	Early Training in Programming: From High School to College
	1 Introduction
	2 Method
	2.1 Research Design and Data Analysis
	2.2 Results

	3 Conclusions and Future Work
	References


