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Abstract. Preservation and restoration of ancient mosaics is a crucial
activity for the perpetuation of cultural heritage of many countries. Such
an activity is usually based on manual procedures which are typically
lengthy and costly. Digital imaging technologies have a great potential
in this important application domain, from a number of points of view
including smaller costs and much broader functionalities. In this work, we
propose a mosaic-oriented image segmentation algorithm aimed at iden-
tifying automatically the tiles composing a mosaic based solely on an
image of the mosaic itself. Our proposal consists of a Genetic Algorithm,
in which we represent each candidate segmentation with a set of quad-
rangles whose shapes and positions are modified during an evolutionary
search based on multi-objective optimization. We evaluate our proposal
in detail on a set of real mosaics which differ in age and style. The results
are highly promising and in line with the current state-of-the-art.

Keywords: Multi-objective optimization · Cultural heritage · Image
processing

1 Introduction

A mosaic is a painting made with small pieces of stone, ceramic, glass or other
similar materials of various shapes and colors (called tiles or tessellae) tied
together by plaster or other binder to form geometrical or figurative decorative
compositions. Mosaics have a long history, became widespread in ancient times
and represent an essential component in the cultural heritage of many countries.
Preservation and restoration of ancient mosaics is thus an important activity,
usually requiring lengthy and costly procedures based on manual acquisition of
the contour of each single tile over a semi-transparent paper superimposed to
the mosaic.

Modern digital imaging technologies may be a great help in this respect,
as tile contours could be collected much more quickly, more cheaply and more
accurately with a suitable image segmentation algorithm applied to a digital
image of the mosaic. In fact, a “digital model” of a mosaic may enable a full
range of radically novel approaches and solutions in this area, ranging from
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analysis of the distribution in large mosaics of tile shapes or of filler between
tiles, to construction of 3D models to be browsed and zoomed interactively.

To the best of our knowledge, there is only one mosaic-oriented segmentation
algorithm that has been proposed in the literature [1]. The performance of the
cited work has been assessed and compared to general purpose segmentation
algorithms recently [2]. In this work, we propose and evaluate a novel mosaic-
oriented image segmentation method. Our proposal consists of an evolutionary
procedure based on a Genetic Algorithm (GA) [3,4]. We represent each candidate
segmentation as a fixed-size set of quadrangles and quantify its quality based on
two indexes that can be calculated without knowing the ideal segmentation in
advance. This property is essential in order to make our approach really practi-
cal. Such indexes assess the average color dissimilarity within each quadrangle
(i.e., tile) and the average color similarity within adjacent quadrangles. We con-
struct a set of different candidate segmentations and then modify such candidate
segmentations stochastically for a predefined set of iterations, according to an
evolutionary paradigm. We drive evolution with a multi-objective optimization
algorithm aimed at minimizing the two indexes mentioned above and associated
with each candidate segmentation.

We assess our proposal on 5 real mosaics which differ in age and style and
have been used in [2]. We analyze the behavior of our proposal in different
flavours, by varying the representation of a candidate segmentation, the criterion
for choosing among the resulting candidate segmentations and the number of
candidate segmentations. The results are highly promising and in line with the
best result in the literature [1,2].

2 Related Work

Image segmentation amounts to partitioning the pixels into groups according to
some criterion, e.g., color similarity. Another, more difficult to evaluate, par-
titioning criterion consists in grouping pixels depending on the object they
belong to. Image segmentation is one of the oldest and most extensively studied
problems in Computer Vision, dating back to the early seventies [5]. A general
overview can be found, for instance, in [6,7].

One of the many possible approaches to image segmentation is based on
optimization: the segmented image acts as the minimizer of a suitable objective
function, depending on the original image and on the labeling of individual pixels
in the segmented image itself. Choice of a suitable objective function is clearly
crucial. Optimization-based segmentation methods may be classified depending
on (i) the representation of the candidate solutions, and (ii) the optimization
technique used for finding the minimizer.

The simplest representation for a candidate segmentation is a labeled image,
i.e., a matrix containing the label assigned to each of the pixels. A more compact
and widely employed kind of representation is based on deformable models. A
taxonomy of deformable models in the context of optimization based image
segmentation can be found in [8]. Roughly speaking, deformable models can



Mosaic Images Segmentation with GA 235

be thought of as flexible shapes that can be placed over the image and suitably
adapted to match the regions in it. There may be either a fixed or a variable
number of models and they may be defined either implicitly (for instance by
means of the level sets of a proper function [9]) or explicitly (for instance as
polygons whose vertices are decision variables [10]).

Concerning the optimization technique, the approaches used in practice rely
on an objective function that is not convex and thus may be characterized by
many local extrema. Furthermore, the solution space (i.e., the set of all possible
segmentations for a given image) is huge and cannot be exhaustively explored.
These facts motivate the resort to metaheuristics [11], which can be partitioned in
(i) trajectory methods, in which the search process can be seen as the evolution in
discrete time of a dynamical system; and, (ii) population-based methods, which
iteratively modify a set of candidate solutions thus the search process can be
seen as the evolution in discrete time of a set of points in the solution space.

The method presented in this work is based on a particular kind of deformable
models, i.e., parametrized convex polygons, and a population-based metaheuris-
tic, i.e., GA. An extensive survey of optimization-based segmentation methods
based on deformable models and metaheuristics is reported in [8], while a review
of segmentation methods based on GA can be found in [12].

3 Our Method

We consider the problem of the segmentation of a mosaic image, i.e., assigning a
label to each pixel of the image: adjacent pixels in the segmented image with the
same label belong to the same region. Ideally, regions in a mosaic image which
has been correctly segmented exactly correspond to mosaic tessellae.

Formally, we denote by S the segmentation method, i.e., a function which
assigns a label S(p) to each pixel p of the image I. We assume that the range
of S includes a special value ∅ which should be assigned to pixels which do
not belong to any mosaic tessella, but instead correspond to the filler, i.e., the
cemented network between tessellae.

The quality of a segmentation of a mosaic image can be assessed objectively
by comparing it against a manual labeling of that image [2]. In detail, let TI

be the ground truth for a mosaic image I and let S(I) be the segmentation
obtained by applying a method S to I. Three objective indexes can be computed
to compare S(I) against TI , the average tile precision Prec(S(I), TI), the average
tile recall Rec(S(I), TI), and the tile count error Count(S(I), TI):

Prec(S(I), TI) =
1

|TI |
∑

T∈TI

maxR∈S(I) |R ∩ T |
|R| (1)

Rec(S(I), TI) =
1

|TI |
∑

T∈TI

maxR∈S(I) |R ∩ T |
|T | (2)
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Count(S(I), TI) =
abs(|TI | − |S(I)|)

|TI |
(3)

where |R| is the number of pixels which belong to a region R and |R ∩ T | is the
number of pixels which belong both to R and T . In an optimal segmentation,
precision and recall are equal to 1 and the tile count error is equal to 0. The
former two indexes may be summarized in the F-measure index, which is the
harmonic mean of precision and recall.

The goal of this work is to propose a new segmentation method which
improves the state-of-the-art on mosaic images segmentation. We propose to
use GA for segmenting mosaic images: a population of individuals—i.e., candi-
date segmentations—is iteratively evolved trying to maximize their quality. In
next sections, we describe how we represent a candidate segmentation S(I) in the
GA framework and how we assess it; finally, we discuss other general GA-related
choices.

3.1 Solution Representation

A segmentation S(I) is a set of regions of the image: since we are interested in
segmenting mosaic images, regions should be able to describe mosaic tessellae,
which, in general, are convex polygons, often with 4 vertexes. For this reason, we
chose a representation which consists of a fixed-size set of convex quadrangles
S(I) = {q1, . . . , qn}, defined by means of their position within the image I and
their size. We explored two variants: one in which each quadrangle q of S(I)
is a “rotated rectangle” and one in which each quadrangle q is a “rotated and
deformed square”.

More in detail, in the rectangle-based representation, each quadrangle is
defined as q(i) = (Δx(i),Δy(i), w(i), h(i), φ(i)) where Δx(i) and Δy(i) are the
offsets of the rectangle center of gravity with respect to a fixed point (x(i), y(i))
in the Cartesian coordinate system of the image, w(i) and h(i) are the rectan-
gle width and height, and φ(i) is the angle of rotation of the rectangle. The
domain of each component of the rectangle-based representation is the same for
each rectangle and depends on a parameter s whose value has to be determined
before the segmentation of the image I: s represents the size in pixel of an ideal
average squared tessella of the mosaic and can be roughly estimated by a human
operator who inspects the mosaic image. In particular, Δx(i),Δy(i) ∈

[
− 1

2s, 1
2s

]
,

w(i), h(i) ∈
[
1
2s, 2s

]
and φ(i) ∈

[
− 1

2π, 1
2π

]
, for each i. The number n of rectan-

gles in the segmentation and the reference position (x(i), y(i)) of each rectangle
are determined using s, the width wI , and height hI of the input image I, as
follows. First, we determine the number nw =

⌊
wI

s

⌋
and nh =

⌊
hI

s

⌋
of rectan-

gles along the x and y axes of the image, respectively. Then, we set n = nwnh,
x(i) = ((i − 1) modnw) wI

s + 1
2s, and y(i) =

⌊
i

nw

⌋
hI

s + 1
2s, where imodnw is the

remainder of the division between i and nw, and
⌊

i
nw

⌋
is the floor value of i

nw
.

In other words, given s, a grid of nw × nh square cells is built on the image I
and each (x(i), y(i)) is the center of a grid cell.
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In the deformed-square-based representation, each quadrangle is defined as
q(i) = (Δx(i),Δy(i),Δx

(i)
1 ,Δy

(i)
1 , . . . , Δx

(i)
4 ,Δy

(i)
4 , φ(i)) where Δx(i), Δy(i), and

φ(i) have the same meaning and domain as in the rectangle-based representation;
similarly, the number n of quadrangles in the segmentation and their reference
positions (x(i), y(i)) are determined from s, wI , hI as described above. Concerning
the other components, each pair Δx

(i)
j ,Δy

(i)
j represents the offsets of the jth

quadrangle vertex with respect to the corresponding vertex of a square with the
same center and with side size equal to s, before the rotation. We set a single
domain for all those components which is

[
− 1

4s, 1
4s

]
, i.e., the actual position of

each vertex of the quadrangle can be moved, in each direction, at most a quarter
of side size away from its reference position. It can be proven that

[
− 1

4s, 1
4s

]

is the largest domain for which the convexity for a quadrangle defined in this
way is granted: despite the convexity of the region is not an intrinsic property
of mosaic tessellae, we chose to impose this constraint because it allows a faster
computation of aggregate features of pixels within the quadrangle, which is what
we do for computing the fitness (see next section). By the way, our experience
suggests that mosaic tessellae are in general convex.

3.2 Fitness Function

The quality of a candidate segmentation S(I) can be expressed in terms of
precision, recall, and count error. Those indexes can be computed only if a ground
truth TI is available for the image I. However, when segmenting a mosaic image
in a real deployment, TI is not available; hence, it follows that they cannot be
used to drive the evolution.

In order to overcome this limitation, we use two other indexes as fitness:
the in-tile color dissimilarity Din and the out-tile color dissimilarity Dout. Intu-
itively, the former quantifies, for each region of the candidate segmentation, how
different is the color among the region pixels; the latter quantifies, for each region,
how different is the average color inside the region with respect to the average
color of an external band around the region. If a region correctly superimposes a
mosaic tessella on the image, the region in-tile color dissimilarity is low and the
out-tile color dissimilarity is high. In order to drive the evolution considering the
entire segmentation, Din and Dout are the averages across all regions in S(I):

Din =
1

|S(I)|
∑

R∈S(I)

(
σR
L∗ + σR

a∗ + σR
b∗

)

Dout =
1

|S(I)|
∑

R∈S(I)

√(
μR
L∗ − μ

R̄\R
L∗

)2

+
(
μR
a∗ − μ

R̄\R
a∗

)2

+
(
μR
b∗ − μ

R̄\R
b∗

)2

where σR
L∗ , σR

a∗ , and σR
b∗ are the standard deviations of the L∗, a∗ and b∗ channel

values of the pixels within the region R (in the CIE-Lab color space), μR
L∗ , μR

a∗ ,
and μR

b∗ are the corresponding mean values, and R̄ is a region which has the same
center of gravity of R but is scaled by a factor β = 1.2—i.e., R̄ is 20% larger
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than R, hence the out-tile color dissimilarity Dout is computed considering the
impact on color of the region expansion.

It can be noted that the objectives deriving from the two indexes are not
strictly anti-correlated by design. On the other hand, there is a region of the
search space in which Din does not improve and Dout does worsen, correspond-
ing to regions slightly smaller than the actual tile. Indeed, we observed experi-
mentally that this trade-off is beneficial to the overall evolution.

3.3 GA Parameters and Best Selection

We used NSGA-II [13] as the actual GA-based optimization algorithm. Concern-
ing the genetic operators used to generate new offspring, we used three operators:
crossover, uniform mutation, and Gaussian mutation, respectively applied with
a probability of 0.8, 0.1, and 0.1.

The crossover operator works as follows: given two segmentations S′(I) and
S′′(i), a new segmentation S(I) is generated such that the ith component of the
jth region of S(I) has one of the two values of the corresponding ith components
in the jth regions of the parents S′(I) and S′′(i), with equal probability. Note
that, in this way, the value of each component in S(I) is granted to stay within
the proper domain.

The uniform and Gaussian mutation operators work as follows: given a seg-
mentation S′(I), a new segmentation S(I) is generated such that the ith compo-
nent of the jth region of S(I) has the same value of the corresponding component
in S′(I) with probability 1 − 2

|S′(I)|nc
and has a new randomly generated value

with probability 2
|S′(I)|nc

, where nc is the number of components in the rep-
resentation for each region (i.e., nc = 5 in the rectangle-based representation
and nc = 11 in the deformed-square-representation). The new value is chosen
according to a uniform distribution within the component domain by the uniform
mutation operator, and with Gaussian distribution by the Gaussian mutation
operator. For the latter, the mean is set to 0 and the standard deviation is equal
to 1

10 of the component domain width—we set this value after preliminary exper-
imentation. Values mutated with the Gaussian mutation operator are checked
and possibly adjusted to stay within their domain. Note that the number of
regions in the segmentation is never affected by the genetic operators.

Concerning the criterion for selecting the best individual upon the last gen-
eration, i.e., the actual proposed segmentation S(I) for the image I, we explored
two options, based on the two fitness function components. Considering the sub-
set of the population consisting of the individuals belonging to the first Pareto
front, we choose as best (a) the individual with the lowest in-tile color dissim-
ilarity Din, or (b) the individual with the greatest out-tile color dissimilarity
Dout.

4 Experimental Evaluation

We were interested in investigating the effectiveness of our proposed segmenta-
tion method in general and with respect to its main design choices: the solution
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representation (rectangle-based vs. deformed-square-based), the best individual
selection criterion (min Din vs. max Dout), and the population size npop.

To this end, we considered 5 mosaics which differ in age and style (see Fig. 1)
and which have already been used in [2]. For all the 5 mosaic images, we obtained
the corresponding ground truth segmentations.

(a) Bird (b) Church (c) Flower (d) Museum (e) University

Fig. 1. The five mosaics of our experimental evaluation.

We performed several experiments: in each experiment, we applied our
method to each mosaic image three times, by varying the random seed used in
the evolutionary search. For each mosaic image, we set the parameter s—which
represents the side length, in pixel, of an ideal squared tessella (see Sect. 3.1)—to

s =
√

wimghimg
nimg

, where wimg and himg are the width and height of the image, in
pixels, and nimg is the number of tessellae in the corresponding grount truth
segmentation.

Table 1 shows the main results of our experimentation obtained with npop =
50, deformed-square-based representation, and maxDout best selection criterion.
The table shows the values, averaged across the three repetitions, of the objec-
tive quality indexes presented in Sect. 3: tile count error (Count), average tile
precision (Prec), average tile recall (Rec), and F-measure (Fm). In order to pro-
vide a baseline, we also applied the state-of-the-art method, Tessella-oriented
Segmentation (TOS) [1], to the same mosaics: concerning TOS, as suggested
in [2], we set the main parameter α to the value which led to the best F-measure
on each mosaic image—differently from our method, for which we used the same
parameter values for all the mosaics.

The main finding of the results in Table 1 is that our method is, on the
average, competitive with TOS. However, there is no clear winner between the
two segmentation methods: the Count index is remarkably better for our method
(0.03 vs. 0.33), whereas Fm is better for TOS (0.658 vs. 0.544). In general, hence,
our method is better in capturing the number of tessellae, but is not particularly
accurate in determining the boundaries of each tessella in the image.

A different point of view on the effectiveness of our method, beyond the
analysis of objective indexes, is offered by Fig. 2, which shows two segmentations
of the University mosaic image obtained with our method (Fig. 2a, in the variant
of Table 1) and TOS (Fig. 2b). Again, a clear conclusion about the best method
cannot be drawn. However, it can be seen that the polygon-based representation,



240 A. Bartoli et al.

Table 1. Results of a selected variant of our method (npop = 50, deformed-square-
based representation, and maxDout best selection criterion) compared to TOS [1].

Mosaic Our method TOS

Count Prec Rec Fm Count Prec Rec Fm

Bird 0.01 0.411 0.659 0.506 0.03 0.528 0.817 0.642

Church 0.03 0.418 0.629 0.502 0.54 0.564 0.719 0.632

Flower 0.07 0.503 0.626 0.558 0.06 0.494 0.678 0.572

Museum 0.03 0.503 0.760 0.605 0.14 0.644 0.873 0.741

University 0.03 0.459 0.674 0.546 0.90 0.632 0.785 0.701

Average 0.03 0.459 0.669 0.544 0.33 0.572 0.774 0.658

which our method bases on, allows to obtain a segmentation in which pixels
deemed to belong to a tessella are clearly distinguishable from pixels deemed
to belong to the filler, the criterion being their belonging to a polygon. On
the other hand, such discrimination is not possible based on the segmentation
obtained with TOS, in which every pixel belongs to a single region and that
region provides no information about its nature (filler vs. tessella).

(a) Our method (b) TOS

Fig. 2. Two segmentations of the University mosaic image obtained with our method
(left) and TOS (right).

Tables 2 and 3 show how our main design choices affect the method effective-
ness. The Count index is not shown in these tables since it depends only on s
(which determines the number n of polygons in the segmentation) and is hence
not affected by these design choices.

The impacts of different representations and best selection criteria are shown
in Table 2. It can be seen that the representation slightly impacts on Fm:
deformed-square-based representation scores 0.543, on average, vs. 0.539 with
rectangle-based representation. Differently, the best selection criterion does not
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affect the average Fm, whereas it can be seen that it does impact on Prec and
Rec (largest Prec with min Din and largest Rec with min Dout): this finding is
consistent with the nature of Din and Dout which are intrinsically related to
precision and recall, respectively.

Table 2. Precision, recall, and F-measure obtained with npop = 50, different represen-
tations and best selection criteria.

Mosaic Rectangle maxDout Deformed-square minDin Deformed-square maxDout

Prec Rec Fm Prec Rec Fm Prec Rec Fm

Bird 0.404 0.669 0.504 0.406 0.654 0.501 0.406 0.655 0.502

Church 0.408 0.635 0.497 0.419 0.630 0.503 0.419 0.632 0.504

Flower 0.492 0.630 0.553 0.509 0.621 0.559 0.506 0.624 0.559

Museum 0.529 0.734 0.615 0.525 0.722 0.608 0.518 0.730 0.606

University 0.440 0.652 0.526 0.474 0.643 0.546 0.470 0.653 0.546

Average 0.455 0.664 0.539 0.467 0.654 0.543 0.464 0.659 0.543

Finally, Table 3 shows how the population size npop affects the effectiveness
of our method: we experimented with three values (20, 50, and 100). The results
suggest that the choice of npop = 50 is good: a significant decrease in Fm is
obtained by reducing npop to 20, whereas no significant improvement appears to
be achievable by doubling the population size. Moreover, in the latter case, the
time needed to perform a segmentation (fourth column of each group) roughly
doubles.

Table 3. Precision, recall, F-measure, and elapsed time (in s) obtained with different
population sizes, the deformed-square-based representation, and the maxDout best
selection criterion.

Mosaic npop = 20 npop = 50 npop = 100

Prec Rec Fm Time Prec Rec Fm Time Prec Rec Fm Time

Bird 0.379 0.671 0.484 2554 0.406 0.655 0.502 4824 0.411 0.659 0.506 12507

Church 0.391 0.643 0.486 2937 0.419 0.632 0.504 7482 0.418 0.629 0.502 16254

Flower 0.480 0.636 0.547 1990 0.506 0.624 0.559 5117 0.503 0.626 0.558 12864

Museum 0.490 0.728 0.585 59 0.518 0.730 0.606 158 0.503 0.760 0.605 409

University 0.416 0.672 0.514 54 0.470 0.653 0.546 156 0.459 0.674 0.546 346

Average 0.431 0.670 0.523 1519 0.464 0.659 0.543 3548 0.459 0.669 0.544 8476

5 Concluding Remarks

We have proposed and evaluated experimentally a novel mosaic-oriented image
segmentation method. The method is completely unsupervised, in the sense that
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does not require any ground truth, and is based on a GA which evolves a fixed-
size set of candidate segmentations according to a multi-objective optimization
algorithm. The performance indexes to be minimized during the search are a
measure of the average color dissimilarity within each tile and of the average
color similarity between adjacent tiles.

We have assessed our method on a set of real mosaics which differ in age and
style, by using objective measures of segmentation quality (i.e., which require a
ground truth associated with each pixel). The results are highly promising and
in-line with the existing state-of-the-art.

We believe our method may still be improved and we plan to investigate,
in particular, (a) a mechanism for taking into account the possible overlapping
among regions of the candidate segmentation, (b) the possibility of varying the
number of candidate tiles during a search dynamically, (c) the impact of suitable
image preprocessing techniques on segmentation quality.
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