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Abstract. In this paper we propose a new approach based on a heuristic
search for UAVs path planning with terrestrial wireless network tracking.
In a previous work we proposed and exact solution based on an integer
linear formulation of the problem. Unfortunately, the exact resolution
is limited by the computation complexity. In this case, we propose in
this paper a new approach based on a heuristic search. More precisely,
a heuristic adaptive scheme based on Dijkstra algorithm is proposed to
yield a simple but effective and fast solution. In addition, the proposed
solution can cover a large area and generate a set of optimum and near
optimum paths according to the drone battery capacities. Finally, the
simulation results show that the drone tracking is sustainable even in
noisy wireless network environment.

1 Introduction

For decades, Unmanned Aerial Vehicles (UAVs) are widely used in modern
warfare for surveillance, reconnaissance, sensing, battle damage assessment and
attacking. The benefits of UAVs include reduced costs and no warfighter risk.
Recently, technological advances in micro controllers, sensors, and batteries have
dramatically increased their utility and versatility and yet, a new horizon is open
for civilian uses. This began with limited aerial patrols of the nation’s borders,
observation and aerial mapping, disaster response including search and support
to rescuers, sports event coverage and law enforcement. Although the market
is almost nonexistent today, this is most likely in the civil field that drones are
expected to play the largest role. Recently, those flying machines have also been
destined to the commercial market and have gained much attention. In fact,
a forthcoming plans for commercial drone use have been recently announced
by a number of companies around the world such, Amazon, Wallmart, DHL,
and Zookal which are investing in mini drones development for variety of tasks,
including freight and package delivery to consumers. The introduction of drones
in civil applications raises new challenges to the government authorities in charge
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of flight security and air traffic management which have to balance safety and
public concerns against potential economic benefit (Fig. 1).
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Fig. 1. Drone package delivery

By virtue of their small size, mini drones are difficult to be detected and to
track. In this frame, the European Parliament adopted a resolution on the use
of drones, which requires Member States to implement various regulations to
ensure the safety of the airspace and to ensure the privacy of citizens threatened
by the use of these flying machines. Through this resolution, it is considered that
regardless of their sizes, the question of identifying is essential, and emphasizes
the need to provide appropriate solutions in terms of locating and tracking. In
other words, this new report aims to ensure the traceability of all UAVs, but
also operators and owners as a sine qua non-conditions for any use.

It is obvious that path planning is one of the most crucial tasks for mis-
sion definition and management of the aircraft and it will also be an important
requirement for UAVs that has autonomous flight capabilities [1]. The opera-
tional problem that this work address is enabling the government authorities in
charge of flight safety to identify, locate and to track drones. Usually the area
is large and the detection and localization time to find the UAV is the critical
parameter that should be minimized. To this end and in order to make this
possible, we present in this paper a newly approach based on the exploitation
of the available wireless network coverage. This approach relies on a powerful
interaction, or collaboration between the UAVs and the operators. Cooperation
in such environment implies that the drone periodically send his identification,
localization, speed and other information to the remote operators through the
available wireless networks. The solution we aim to present provide or inform
of the optimum and the near optimum paths that the drone should follow to
ensure a reliable communication and high packet delivery rate depending on its
battery autonomy.

In our previous work [2], we formulated the problem as an Integer Linear
Problem. Moreover, we expressed in an analytic manner the packet loss rate
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of tracking messages depending on the UAV location and the wireless network
coverage. By solving the ILP problem using CPLEX, we were being able to
analyze how the radio coverage as well as the threshold on the packet success
rate, impact the number of possible solutions and the trajectory of the UAV.
Unfortunately, due to the computational complexity the proposed approach was
not able to provide a path planning solution for a large area. In addition, the
packet success rate was computed by considering only the radio channel and
without any MAC layer operations.

Our current investigations focus on the complexity issue raised for larger size
of the area A. For the drone path planning, a heuristic adaptive scheme based on
Dijkstra algorithm is presented to cope with the problem of scalability. The flight
path of drone is optimized in order to improve its connectivity to the available
terrestrial wireless network and consequently its localization, identification and
tracking. Moreover, the solution is proposed to yield a simple but effective and
fast solution and tested under a more realistic scenario characterized with a noisy
environment.

2 State of the Art

Path planning for a kinematic system issues has been widely studied and
have been addressed using different approaches and techniques. Thus, several
approaches exist for computing paths given some input variables of the envi-
ronment and in general, the two most popular techniques are deterministic,
heuristic-based algorithms [3-5] and probabilistic, randomized algorithms [6,7].
The choice of the algorithm to use depends on the type of problem to be solved.
Although, the robotic bibliography on this subject is very rich, it’s not the case
for the UAV’s one.

For the autonomous flight of drones, path planning is one of the most crucial
and important issues to solve. Nowadays, the application of UAV is extending
from high-altitude flight to very low-altitude, where the impact of the terrain,
the environment and the air traffic will be the keys factor to be considered to
avoid collision [8]. However, we do not aim to provide an exhaustive list but we
will be content to provide the most relevant work related to the path planning
regarding to the nature of the objectives, problems formalization and resolving
methods.

The author in [9] presented a framework to compute the minimum cost coop-
erative route between a heterogeneous package delivery team composed of a truck
and micro drones. They abstracted the problem on a graph and formulate the
issue as a discrete optimal path planning problem. In the same context of hetero-
geneous teams, the authors in [10] presented a path planning problem involving
an UAV and a ground vehicle for intelligence, surveillance and reconnaissance
missions. The addressed problem is similar to the ring-star problem and the
hierarchical ring network problem.

On the other hand, the authors in [8,11] presented three dimensional path
planning solution for unmanned aerial vehicles. The first solution is based on
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interfered fluid dynamic system, while the second approach uses linear program-
ming where obstacle avoidance and target tracking are linearized to generate a
linear programming model in relative velocity space. Dealing with adversarial
environments, the authors in [12,13] presented solutions for unmanned aerial
vehicles path planning in uncertain an adversarial environment in sight to reach
a given target, while maximizing the safety of the drone. They proposed a path
planning algorithm based on threats probability map, which can be built from
a priori surveillance data and from a mechanism based on a model predictive
control.

Another important work is [14], which contains concise summaries and
focused on dynamic problems and discussed a family of heuristic algorithms for
path planning in real-world scenarios such as A*, D*, ARA* and AD*. Finally,
it is worth mentioning the research done by [15] that can be considered one of
the few papers dealing with path planning strategies destined for a based UAVs
network. The authors compared deterministic and probabilistic path planning
strategies for autonomous drones to explore a given area with obstacles and to
provide an overview image. The results showed that although the determinis-
tic approach could provide a solution it requires more knowledge and time to
generate a plan. However, the probabilistic approaches are flexible and adaptive.

To the best of our knowledge, none of the above works have investigated UAV
path planning problem assuming that UAV uses terrestrial wireless networks to
transmit its locations.

3 Path Planning Problem Formulation

3.1 Problem Statement and System Description

In this paper, we are considering a package delivery services using UAVs. Basi-
cally, a UAV has to deliver a package from a depot to a predetermined destination
or consumer. In this frame, the system is modeled as 2D area A without any
obstacle. The projection of the flying area is represented by a rectangular with
length of x4, and a width of y,,,4,. We suppose that the drone D,.,,. keeps the
same altitude h from the starting point O to the destination D. A set of wireless
receivers or Base stations BS = {BSi, BSs,....BS,} is deployed randomly at
different altitudes in order to provide a wireless access infrastructure. In addi-
tion, we assume a partially noisy environment with the existence of a certain
number of noise nodes Nyise = {Nn1, Nn2, ....Nnp} deployed within A and use
the wireless infrastructure as an access network. We also consider that the drone
has a limited flight autonomy 7" and equipped with a wireless interface in order
to communicate with the other Base stations. The latter has a short sensing
range compared to the size of the region of interest. Moreover, we consider that
A is discretized into C' hexagonal Area Units (AU) of the same dimension. The
transition cost between two neighbor cells depicts certain reliability of communi-
cation, i.e. a certain probability that the communication is not interrupted and
has a specified Packet Reception Rate PRR.
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Our goal is to determine a path or a set of paths that optimize the drone
localization and tracking using a wireless network, such as cellular or IEEE
802.11x technologies. For this purpose, we assume that after each period 1" drone
generates a message of size D bits containing its identification, its position and
speed. The on-board wireless interface tries to send each generated message
to the remote UAV monitoring and controlling system via the BS while the
jamming nodes attempt to exhaust and to overload the network by sending
messages in a continuous and unpredictable manner to the BSS. For that reason,
a message can be corrupted or lost due to possible interference and collisions.
The opportunity to transmit also depends on the radio coverage, the capacity of
the related wireless technology and the drone’s location.

The basic concept in building the probability map in this paper is differ-
ent to the probability grid-based in our previous work. Thus, in this paper,
the OMNeT++ 4.61 simulator and the INET framework were used to generate
the Received Packet Rate and the signal-to-interference-plus-noise ratio SINR
maps. Thereby, for each cell C' the Received Packet Rate RPR is computed as
the proportion of received messages over generated ones and the values of the
SINR.

3.2 Problem Formulation

In order to describe the proposed mathematical model that represents the opti-
mum path planning problem, it is useful to introduce the following notations
and definitions.

First, we model the problem with the help of a directed and valued graph
G consisting of n hexagonal cells ¢, where the valuation of an arc is comprised
between 0 and 1, indicating the packet error delivery on that arc. The unit cost
for using the arc going from node ¢ to node j is ¢;;. The flow going that way is
denoted by a binary variable x;;

(1)

S 1, if the drone moves from AU i to AU j
710, otherwise.

The cost of a path represents its reliability and it is set to the product of the
RPR of each cell forming the resulted path.

n n

Pathwst = H H RPRU * T4 (2)

i=1j=1

As, the RPR;; is comprised between 0, 1], this means more we add a new
cell to the path more the path cost is low. Thus, the mathematical formulation
of the optimal drone path planning problem is reported as follows:

minimize Z Z Ci jTij (3)

i€AjEA
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and

n n

maximize H H (PRR; j)xij (4)

i=1j=1

The objectives functions (3) and (4) represent respectively the distance or
the delivery delay that should be minimized between the start point O and the
destination D and the drone tracking possibility that should be maximized, by
passing through cells with highest Received Packet Rate.

In addition to the last two objectives we add a last objective that aims
to minimize the tracking time loss of the drone, by avoiding to pass through
several adjacent cells with low RPR. Basically, we need to maximize a given
cost function noted as f. For example, as illustrated in Fig.2, if we have to
choose between the paths a (0.9, 0.9, 0.9, 0.1, 0.1, 0.1) and b (0.9, 0.1, 0.9, 0.1,
0.9, 0.1) with the same distance and the same average packet delivery ratio, than
the score function f has to privilege the solution b rather than a. The privilege
of the solution b is motivated by the fact that we have less adjacent cells with
low packet delivery probability. The main benefit of this choice is to have the
communication rupture spaced out on the time rather than having a long time
with no communication.

Fig. 2. Example of paths with the same cost

To this end, we need to analyze the cells data in terms of RPR values and
their positions in the path by creating series of averages of different subsets of
the full path. Basically, given K a path and the subset size equals to 2, the first
element of the moving average is obtained by taking the average of the initial
fixed subset of the number series. Then the subset is modified by shifting forward,
excluding the first number of the series and including the next number following
the original subset in the series. This creates a new subset of numbers K, which
is averaged. This kind of mathematical transformation is also used in the signal
processing in order to mitigate the higher frequencies and to retain only the
low frequencies or the contrary. The principle of moving averages is interesting,
especially when it comes time to make predictions. Basically, this is about to
calculate an average data based on the most recent results in order to create
forecasts. Thus, it is assumed that the most recent data are more important or
more meaningful than older data.



Heuristic Path Planning for UAVs Integrating Tracking 219

Let’s consider f(K) the score function and K is the path to analyze,
where K = {RPR;;RPRy;...RPR,} with RPRy, RPRs,... RPR,, are the
Received Packet Rate at the cells c¢1, co, ...c, constituting the given path k
and K = {K;Ks;....K,,_1} where K; = (RPR; + RPR;,1)/2. Finally, since
the geometric average is less sensitive than the arithmetic average to the highest
or lowest values of a series, we propose the following cost function:

In addition to the last objectives we add a constraint related to the UAV’s
maximal flight distance:

Z Z Ci jTij < ) (6)

i€AJEA
where ¢ is the maximum distance that the UAV could perform, taking in account
UAV autonomy, speed and package weight.

3.3 Path Computation

Different shortest path algorithms exist like A*, Dijkstra, Bellman-Ford and
others. Our proposal is based and adapted from Dijkkstra algorithms. The latest
is one of the most common and effective algorithms used to search the shortest
path between two vertices in a graph in terms of distance. For our case, we
adapt the Dijkstra algorithm to find the shortest path with high communication
reliability and high packet reception.

Since we are dealing with probabilities, the best way to find the shortest path
with high Received Packet Rate is to seek for a path where the product of the
probabilities RPR; of the visited cells that constitute a given path is maximized.
This also guarantees that if each time a cell is added to a path, the product of
the probabilities decreases.

In this case, our algorithm first starts by initializing the cost of the origin
cell ¢, to 1. The cost of the remaining cells is set to 0. Starting from the origin
point, we built step by step a set of P marked cells. For each marked cell ¢;,
the cost is equal to the product of the Received Packet Rate probabilities of all
predecessors cells. At each step, we select an unmarked vertex c¢; whose cost is
the highest among all vertexes not marked, then we mark c¢; and we update from
¢; the estimated costs of unmarked successors of c¢;. We repeat until exhaustion
unmarked vertices.

Based on the above algorithm, we also derived a set of near optimal paths.
In fact, the solution was extended to compromise localization data delivery rates
and distance between the starting point and the destination with the respect of
the drone autonomy. To this end, if the length of the optimal path is greater
than the drone autonomy or simply, the operator would to have multiple choice
of short paths, then we re-execute the function above until we get the desired
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solution and for each execution we set the RPR of the cells of the obtained path
to €, where € is a small non-null value. This allows us to generate a new path
totally different from the previous one. All these paths can then be compared
using the cost function f.

4 Results

In this section we evaluate our proposed algorithm to generate optimal and near
optimal paths for a drone to deliver packages from a start point to a given des-
tination. Two main objectives were fixed, first, to ensure a maximum tracking
and localization time of the drone along with its flight while the second one was
to minimize the length of the path in accordance with the drone flight autonomy
and the capacity of its battery. Thus, we assess the algorithm in different scenar-
ios. Using OMNET++ simulator, we generate the RPR map for a given altitude and
in the presence of a given number of nodes using the wireless network. Basically,
in order to increase the packet losses we can increase the altitude of the drone
or the number of nodes acting as noisy nodes. In the following, we provide some
results according to the simulation parameters summarized in the Table 1.

Table 1. Simulation parameters

Area X =Y = 1000 m
AU radius (constant) a=5m

BSs 10

Noise nodes 10, 20, 30, 40, 50
UAV altitude 60 m

D 200 bytes

P, 20 dBm (100 mW)
Background noise power | =72 dBm

Path loss type Two ray ground reflection
Antennas gains Ge = Gr = 10 dBi
Carrier frequency 2.4 GHz

Figure 3a and b represents respectively the shortest path with highest RPR
(optimal path) at 60m of altitude with the presence of 20 and 50 noise nodes.
Since the problem is new and there is no other similar algorithm in the literature,
we compare the resulted paths to the shortest path using the well-known Dijkstra
algorithm.

The set of paths illustrated in the Fig. 3¢ represents the near optimal paths
calculated by our algorithm. As indicated in the Fig. 4, our proposed solution is
able to provide other paths, called near optimal paths shorter than the optimal
one but eventually with less important RPR. It is clear that even for the shortest
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near optimal path with a distance almost equal to the Dijkstra short path length,
the RPR is even important. The relationship between path length and RPR is
shown in Fig. 4. It proves the efficiency of our solution to find more than one
optimal paths with different lengths and RPRs. More the path is longer more
the RPR is important.

Dijkstra path with length = 680 & RPR = 0.10
o—o Opti

1000

0 1 00, =
—200 0 200 400 ~ 600 800 1000 1200 =200 0 200 400 600 800 1000 1200 =200 0 200 400 600 800 1000 1200
X X X

(a) noise nodes= 20 (b) noise nodes= 50 (c) set of near Optimal paths

Fig. 3. Optimal and near optimal paths, h=60m
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Fig. 4. Near Optimal paths with respective length and RPR

To understand more the impact of the noisy environment on the path length
and quality, we varied the number of the nodes simulating the noisy environment,
we fixed the drone altitude to 60 m and we measure the length of the optimal
paths and their respective RPRs. If we increase the number of noise nodes, we
gradually decrease the quality of the signal and subsequently the RPR and the
path length decrease too as shown in the Figs.5 and 6.

It’s clear that bad quality of the signal and a noisy environment cause a low
RPR; But how it can affect the path length? This can be explained as follows:
with an excellent radio coverage, the drone tends to be attracted to the cells
with higher SINR, which represent the BS locations. And as we go along with a
bad or a noisy radio coverage, the drone tends to take the shortest path to its
destination.
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5 Conclusion

In this paper, we propose a path planning algorithm for UAV. Our approach
doesn’t only generate one single optimal solution but a number of other near
optimal paths with a trade-off between length distance and probability of local-
ization determined by the drone flight autonomy. Therefore, the operator who is
in charge of tracking the drones for package delivery missions can choose the best
path suited to the need of localization and tracking but also to the capability of
the UAV in terms of energy autonomy. More precisely, if identification, localiza-
tion and tracking is the main concern than he can choose the longer path which
insures a high communication probability and if the UAV energy autonomy is a
priority than the operator has the possibility to choose the suitable path length
according to the battery duration.
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