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Abstract. With the increased use of electric vehicles, the discharge of
electric vehicle (EV) batteries (vehicle to grid, V2G) has been repeatedly
proposed as enabler of smart grid services. In this work we describe the
weaknesses of current discharging models and propose a model based
on explicit discharging tasks. Using simulation in a microgrid control
architecture, we realize several V2G use cases that involve aggregated
loads and EVs, obtaining promising results.
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1 Introduction

Following the seminal papers of Kempton and Tomic [1,2] in which the authors
present scenarios and business cases for supplying energy to the grid from batter-
ies of plugged-in electric vehicles (PEV), a large number of publications emerged
to analyze the benefits and drawbacks of the vehicle to grid (V2G) technology.
At the time of writing the trend to efficient and “clean” EVs is unbroken, and
the fact that private owned EV remain parked 90% of the time makes the use
of the car battery for buffering energy appealing.

One of the most viable scenarios for V2G used in the integration of renewables
into the grid to meet peak load by storing the energy from solar peak to the load
peak, see [1,12]. Since the renewable power generation rate fluctuates strongly,
the power output is often curtailed to reduce the variation. G2V and V2G would
help to absorb these variations without curtailing.

In [3] the authors review the revenue opportunities of different use cases for
the energy stored in EV batteries: regulation (frequency control), reserve (e.g.
spinning capacity kept aside for cases of sudden power loss), renewable energy
exploitation. The authors however warn that saturation in the reserve market
would probably reduce the attractivity of such services. Although the revenues
from V2G can attain several hundred dollars per year and vehicle, the authors
of [3,4] arrive to the conclusion that most benefits of V2G can be provided as
well through unidirectional, controlled charging.
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Several works [5,6,11] assume that the battery of an EV can be discharged
anytime (if the EV is plugged-in) similarly to a fixed battery. We argue that this
mode of operation has serious drawbacks, especially when a fleet of EVs is to be
controlled, as we will point out in Sect. 2.

The prevalent model of anytime discharge of a plugged-in EV battery has a
main drawback, as the EV owner has no control over the frequency and intensity
of charge/discharge operations, as we will explain in the next section.

Therefore, similarly to charging tasks, we propose the introduction of explicit
discharging tasks, as elements of future V2G services. These tasks are charac-
terized by start and end times, by the amount of energy to be discharged, or a
minimum discharging power required by some services. The user maintains in
this way the control over the battery degradation, understands the value of the
energy (and of the service) as well as the state of the battery before and after
the discharge. Based on this model, a number of V2G use cases are simulated
and discussed.

The rest of the paper is as organized as follows: in Sect. 2 we describe the
model for explicit discharging tasks, and derive the energy flexibility of EV bat-
tery charging and discharging. Section 3 describes the control architecture in
which we embed the charging and V2G operations and formulate the optimiza-
tion problem for a charging station. Section 4 provides simulation results and
Sect. 5 summarizes the lessons learned.

2 Flexibility Models for EV Charging and Discharging

2.1 Anytime Discharge

Most of the previous works on bidirectional charging use a model similar to a fixed
battery. Mostly controlled in real-time by voltage or energy price, these home bat-
teries may still have a schedule, stating for instance that at a certain time of the
day, the state of charge should not fall below a certain value. In general, any tra-
jectory that reaches this value, via charging and discharging is feasible.

EV battery models require more constraints, first of all because of their avail-
ability periods. The primary objective is to charge the battery to a certain state
of charge, until a given time. Controlled charging allows to achieve this goal via
many trajectories and avoids overloading the local grid connection. However if
we add the possibility of discharging, the process becomes uncontrollable, espe-
cially if the control applies to a whole EV fleet. Therefore, in order to implement
energy management functions with V2G, some authors [5,6] use heuristics. It
cannot be avoided however, that some of the vehicles have to charge in order to
achieve the SoC in time, while other vehicles discharge to provide V2G power.
This can be seen as a net transfer of energy from one battery to another and is
an undesirable side effect.

Moreover, the number of discharges and their intensity cannot be controlled
with this model, therefore the battery deterioration cannot be estimated nor lim-
ited and compensation for this degradation cannot be calculated in the business
model.
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2.2 Explicit Modelling of Charging and Discharging Tasks

The proposed model is applicable to single PEV, a charging fleet or to a general
EV service operator.

The mobility pattern has a considerable impact on the effectiveness of V2G
operations; for example, in a working and living neighborhood, a part of the
vehicles leave in the morning and arrive in the afternoon, while another part
arrive in the morning and leave in the afternoon. Without explicit discharge
tasks, V2G operations are not possible neither in the morning (because the just
arrived cars have to charge first), nor in the afternoon, etc.

Crucial for the charging and discharging operations are energy and power
flexibility. In Fig. 1 we illustrate the energy flexibility of a charging task, before
the car is available at ta = 1. Charging can be performed with power p ∈
[0, pcmax], pcmax = 2 kW, but in order to reach Ec

min = 4 kWh by the time td = 6,
the car has to start charging at t = 4 at the latest.

Fig. 1. Energy flexibility of a EV charging task

The first model we introduce is the Energy based discharge task. For
the qualitative discussion we assume that the EV availability forecast is per-
fect, and neglect the energy losses of approximatively 12% [12] in charging and
discharging.

The proposed discharge model defines a discharge task in a time interval
[ta, td], similarly to the charging task. The flexibility of a discharge task as it
appears at t = 0 is illustrated in Fig. 2 for a vehicle available between ta = 1 and
td = 5. In general the minimum and the maximum amount of energy provided
by the battery can be specified. The discharge power is p ∈ [0, pdmax] with pdmax

= 3 kW. The amount of energy to be injected in the grid during [ta, td] is at
least Ed

min and is given. How long in advance this information is known to the
system and how it is negotiated between EV owner and aggregator, is a matter
of the service design and will not be detailed here. In case of peak load leveling
or ancillary services (see [3] for an overview of services) the aggregator could for
example perform a request for bids.
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Table 1. Notation summary

Notation Description

j ∈ N Index the time periods

i ∈ M Index of charging or discharging task

tai , t
d
i Time interval for task i

pinj Injected power from the grid at time j

pcmax Max. charging power

pdmin Min. discharging power

pdmax Max. discharging power

P ij , P ij Power flexibility

Eij , Eij Power flexibility

ei,j Energy charged until j

pij Power charged/discharged during interval j

SoCi State of charge

Ec
min, E

c
max Charging minimum demand

Ed
min Discharging guaranteed demand

On a household level, a service would consist of buffering the generated renew-
able energy in the EV battery and then provide it to the household via discharg-
ing tasks that the user can configure himself.

Like any technology that was originally intended for another purpose (charg-
ing energy for driving), the approach used for discharging has also drawbacks:
it requires the stakeholders to plan in advance, which implies that services with
fast response such as grid frequency control or spinning reserve are probably
difficult to realize. This applies in general to any stand-by service, as well as to
outage or islanding scenarios.

Fig. 2. Energy based EV discharge task

In a variant of the discharge task, the Guaranteed power discharge task,
a minimum discharge rate pdmin is specified in addition to the minimum energy
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amount, the maximum discharge rate and time interval. In Fig. 3 the discharge
power can be selected between pdmin and pdmax. Any trajectory between the two
curves, from the initial state of charge to the final SoC represent the same amount
of energy discharged, in our example 28 kWh. The tangent at any point of the
trajectory (the charging rate) must however be larger than pdmin. Such a model
might be required if a certain minimum power intensity has to be provided as
part of the V2G service definition.

Fig. 3. Guaranteed power EV discharge task

3 Scheduling of Discharge Tasks in a Charging Station

We define a charging station as a parking lot and a fleet of PEVs, each connected
to a charging point, so that controlled charging and discharging are possible. The
charging station controller has the objective to optimize charging and discharg-
ing, such that the total load of the charging station follows the setpoints pref

issued by a central controller (acording to a microgrid control architecture, for
details see [7]). A factor that depends on the energy price cj might be added to
the objective. α is the weighting coefficient between the objective components.
The local optimization problem at the charging station controller should satisfy
the constraints (3), (4), (5), (6). For the schedule calculation, we use a simple
model predictive control (MPC) [10] scheme in which the variables p, pin, e, etc.
are computed for the future N timeslots in each control loop iteration. It has to
be noted that any other model that exploits the flexibility information from the
charging and discharging models could be used instead.

min :
∑

j∈N

(α(pinj − prefj )2 + (1 − α)cjpinj ) (1)

pinj =
∑

i

pij (2)
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P ij ≤ pij ≤ P ij , t
a
i ≤ j ≤ tdi (3)

Eij ≤ eij ≤ Eij , t
a
i ≤ j ≤ tdi (4)

ei,j = 1/Tpi,j−1 + ei,j−1 (5)

ei,0 = SoCi (6)

ECS
j =

∑

i

Eij ;P
CS
j =

∑

i

P ij (7)

E
CS

j =
∑

i

Eij ;P
CS

j =
∑

i

P ij (8)

3.1 Aggregation Optimization Model

At the top of the control scheme we use an low voltage grid (or microgrid)
aggregation controller that supervises a set R of nodes composed representing
residential loads, commercial loads and charging stations.

The limiting constraint in the aggregation function model is the rated power
at the transformer (similar to the problem definition in [6]). Using the same
model predictive control scheme, the aggregator solves the optimization problem
(9, 10, 11) below, in each of the timeslots of the time horizon T, and calculates
the setpoints for all the nodes in the microgrid, including the charging station. A
setpoint for node i is related to its power consumption prediction by the relation:
prefi = pini +βi. pin and the flexibility information can be provided by the nodes
using a Demand Response communication protocol, such as OpenADR. The
model uses the values of PCS , P

CS
, the predicted power consumption P in.

In the objective (9), we want to minimize the difference between the setpoint
at time t and the setpoint at time t-1, similarly to [9], therefore we denote
pref−
i = (pini + βi)|t−1

minimize

α
∑

i∈R

β2
i + (1 − α)

∑

i∈R

(prefi − pref−
i )2;α ∈ [0, 1] (9)

subject to:
∑

i∈R

(pini + βi) ≤ PLV (10)

P i ≤ pini + βi ≤ P i, i ∈ R (11)
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4 Simulation Experiments

In the simulation experiments below we use a microgrid control architecture [7]:
each charging station and each building has associated an energy management
controller (CEMS); these controllers report to an aggregation controller that
computes the appropriate setpoints for each facility.

Table 2. Parameters of the EV charging and discharging tasks used in the simulation
experiments

Charge task pcmax Charge tai dur[h] Ec
min Discharge task Discharge tai dur[h] Ed

min

C01 11 06:00 6 6 D01 15:00 4 -6

C02 12 07:00 9 8 D02 16:00 5 -8

C03 11 08:00 9 10 D03 17:00 4 -10

C04 12 10:00 2 4 D04 15:00 5 -6

C05 11 09:00 8 6 D05 16:00 4 -8

C06 11 14:00 2 5 D06 15:00 4 -5

C07 11 12:00 2 4 D07 16:00 5 -4

C08 11 07:00 9 8 D08 16:00 4 -8

C09 9 08:00 9 9 D09 16:00 4 -9

C10 12 09:00 8 7 D10 16:00 4 -7

C11 12 06:00 3 6 D11 16:00 4 -6

C12 11 08:00 3 6 D12 16:00 4 -6

In a first set of experiments we show that the load of a charging station can
be strongly reduced if needed, thanks to the builtin flexibility. For this purpose,
we artificially limit the total load and measure the charging performance of
individual charging tasks. The simulation setting consists of 12 EV charging
tasks associated to a charging station (see Table 2). The load limit PLV is set
to 8, 10 and 15 kW. Figure 4 shows the total charging load. In the 8 kW case the
setpoint is not followed exactly, however for all three runs the energy demand
Ec

min is fully satisfied.
The second experiment illustrates the peak load shaving use case. The same

charging station controller manages now 12 discharging tasks which have been
planned for the afternoon (3 pm to 8 pm), see Table 2. We assume that the bat-
teries have the necessary amount of energy, for instance because they have been
charged previously from PV generated power. For the load we use the models
developed in the IRENE project [7,8] in which different buildings with critical
and flexible load are available. We have selected two apartment blocks with 24
apartments each, with PV generation and flexible consumption (air condition).
The whole microgrid load is limited to 70 kW to simulate the peak shaving
requirement. In Fig. 5 we depict the total load after using the V2G discharging
tasks and achieve the peak load reduction. It can be seen that the aggregated
discharge based on V2G works and reduces the peak that otherwise would reach
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Fig. 4. Limiting the load of 12 charging EVs to 8, 10 and 15 kW

Fig. 5. (a) Charging station discharge only, (b) buildings load, (c) combined load

90 kW. We argue that such a behaviour cannot be achieved with the “anytime
discharge” model presented in Sect. 2.1.

Finally, we adapt our simulation system to the use case of a single household
that uses V2G for buffering renewable energy between the generation (midday)
and consumption time (evening). Figure 6 shows only the discharging schedule:
the discharge task is defined as follows: start at 6pm, duration 6 hours, = Ed

min =
Ed

max = −6 kWh. If we require that the net power consumption of the house
remains positive, then we obtain the behaviour in Fig. 6. The household power
consumption is nicely mirrored by the discharge task, except for a few transient
spikes.
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Fig. 6. Renewable integration for single house using a discharge task

5 Discussion and Concluding Remarks

In this work we analyzed two different models for discharging vehicle batteries:
the first one ressembles to a home battery model, where no constraints on the
number or intensities of discharging operations are imposed, and the second one,
described in detail, defines a discharge job with a defined amount of energy.

Using the first model in a peak load shaving scenario we observed that almost
no discharging takes place. The are several reasons for that, one is that charging
flexibility is normally sufficient to address peak shaving. This holds for the whole
charging period, which in case of controlled charging spreads over the whole
parking period. In addition, discharging is associated with costs (it degrades
the battery life time), therefore it comes as last alternative in achieving the
optimization objective [3].

Although many scenarios have been proposed for V2G, three most viable have
been simulated using the discharging task model and the results are promising.
The discharging tasks can be managed by the user, increasing the acceptance and
offer a clear basis for compensation and for estimating the battery degradation.

For the realisation of V2G scenarios that are beneficial to aggregated loads,
more research related to the realisation of business models and payment possi-
bilities to compensate the EV owners of the V2G service is needed.
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