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Abstract. In this paper, we consider the problem of scheduling shiftable
loads, over multiple users, in smart grids. We approach the problem, which
is becoming increasingly pertinent in our present energy-thirsty society,
using a novel distributed game-theoretic framework. From a modeling per-
spective, the distributed scheduling problem is formulated as a game, and
in particular, a so-called “Potential” game. This game has at least one pure
strategy Nash Equilibrium (NE), and we demonstrate that the NE point
is a global optimal point. The solution that we propose, which is the pio-
neering solution that incorporates the theory of Learning Automata (LA),
permits the total supplied loads to approach the power budget of the sub-
net once the algorithm has converged to the NE point. The scheduling
is achieved by attaching a LA to each customer. The paper discusses the
applicability of three different LA schemes, and in particular the recently-
introduced Bayesian Learning Automata (BLA). Numerical results (The
algorithmic details and the experimental results presented here are limited
in the interest of space. More detailed explanations of these are found in
[13]), obtained from testing the schemes on numerous simulated datasets,
demonstrate the speed and the accuracy of proposed algorithms in terms
of their convergence to the game’s NE point.

Keywords: Smart Grid · Load scheduling · Potential Game · Nash
Equilibrium · Learning Automata

1 Introduction

As society becomes increasingly energy-thirsty, the problems associated with
collectively controlling the use of energy resources so that the electrical grids
are not overloaded, are becoming more dominant. Power utility companies often
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warn customers to limit their power consumption especially in the warmer sum-
mer months. Although this is deemed to be voluntary, these utility companies
attempt to enforce it by charging higher rates for the power that is consumed
during “peak hours”.

Utility companies attempt to monitor and control the use of energy by resort-
ing to so-called “Smart Grids” (SGs). In a SG, loads can be categorized as being
either “shiftable” or “non-shiftable”. Non-shiftable loads comprise of devices
such as bulbs, where there is no room for scheduling, since the power required
by the device must be supplied as soon as the device is turned on. Shiftable
loads, on the other hand, such as water and floor heaters (which are every-day,
commonplace appliances in countries with colder climates), can tolerate a certain
amount of delay, permitting the users the possibility to schedule them when are
turned on. Since these shiftable loads can be adaptively scheduled, the system
is capable of smoothing the power consumption curve.

There is a vast body of literature associated with achieving distributed
scheduling in SGs, all of which focus on the various facets of the problems
encountered in this area [3,4,11]. The main focus of the existing studies that
use distributed algorithms is to distribute the computational load to multiple
controllers/agents in order to reduce the overall communication and computa-
tional complexity, and consequently to “spread them out” to be handled by
the individual users. In these cases, the appliances of the end-users (the actual
customers) may still be controlled by a local controller/agent.

In our study, various customers are allowed to decide by themselves whether
they want to turn a load on or not. To achieve this goal, we propose a distributed
Learning Automata (LA)-based approach, where each customer is equipped with
a LA to learn from the environment and decide whether to turn on its appliances
or not.

The application of LA in SGs has been studied a little, including using them
in the underlying communication network in SGs and in the power scheduling
approaches. The solution model we propose in this paper is distinct. Firstly, we
model the system as a specific type of game and proceed to study its properties.
Based on the these properties, we design a distributed LA-based algorithm to
solve the game. With regard to solution strategies, we propose the deployment
of three LA schemes, explained in the body of the paper. In the case of all
these LA-based schemes, the consumers do not need to share information to
the provider. Rather, they negotiate the power utilization and make a decision
between themselves, implying that the power supplier has to merely perform the
task of being a power budget provider, rather than also a scheduler.

2 System Model

2.1 Problem Formulation

The research undertaken in this research focuses on the domestic smart-grid sub-
net. The lowest level, i.e., the local domestic network between the transformers
and the end customers, is the subnet that we concentrate on. A typical scenario
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of this subnet is an apartment building with many families which play the role of
the customers, and where the building is connected to a main power source. This
power source is provided and installed by the power supplier, and it obtains its
power budget from the upper levels of the power network based on the schedul-
ing of the supplier. The objective of the power source is to provide power to the
various families, and at the same time to maintain the overall power consumption
below a given power budget. Following the common practice [6,14], the overall
budget for the shiftable load can be suggested by the source to the customers,
and this quantity is denoted by CSL. Typically, the time index is segmented into
slots, indexed by t, which are of the order of several minutes long. In the beginning
of each time slot, the budget for the shiftable load is offered to all the customers.
But once the customers obtain this budget, they will have to compete with each
other for their own loads. Once a consumer wins the competition, his load will
be served within this time slot. The competition among the various customers is
carried out through mutual communications and information exchange.

Suppose there are N customers with their individual demands
{L1, L2, . . . , LN} for their respective shiftable loads at time slot t. CSL, referred
to above, may not be sufficient to serve all the {Li} loads for all the customers.
It would thus be necessary for the system to figure out which users can be served
such that

∑N
i=1 Lidi ≤ CSL, where di ∈ {1, 0} denotes whether customer i is to

be served or not. In other words, a decision of 1 for a particular customer implies
that the specific customer’s demand is to be served by the grid in the current time
slot, while the decision of 0 means that the corresponding load demand will not be
served by the grid in the current time slot. Thus, clearly, all the users who attain the
decision 1 accomplish the sharing of the total shiftable loads’ budget, CSL. How-
ever, a customer that is not served in the current time slot will eventually be served
in the future time slots. The objective of the distributed scheduling problem is to
determine a proper sub-group of customers whose aggregated demand is as close to
the budget as possible, although it is not allowed to exceed the budget. Formally,
the problem is formulated as follows:

max
di

N∑

i=1

(diLi) ,

s.t.
N∑

i=1

(diLi) ≤ CSL, di ∈ {1, 0}.

(1)

To simplify the notation, unless explicitly stated, we denote the term∑N
i=1(diLi) as LT . Comparing the values of

∑N
i=1 Li and CSL, we highlight

the following variations of the problem:

(i) Total shiftable demand is less than shiftable capacity, i.e.,
∑N

i=1 Li ≤ CSL.
Clearly, in this scenario, since the capacity permitted is more than the
demand, all the loads can be served by the source.

(ii) Total shiftable demand is greater than shiftable capacity, i.e.,
∑N

i=1 Li >
CSL. This is the condition of greatest concern for both the supplier and the
set of customers, because, clearly all the demands cannot be served by CSL.
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Note that within this case, there is also a special case where the load of
certain customers is greater1 than the available shiftable capacity. Indeed,
the scheme that we propose presently can also be applied to it.

The problem described in Case (ii) above (except for the special case where
∀i, Li > CSL), is NP-Hard because it can be deduced to a subset-sum prob-
lem. To solve this problem in a distributed manner, the customers need to
communicate with each other and to send their respective decisions {di} (i.e.,
their decision values of either 1 or 0, meaning “YES” and “NO” respectively),
along with their demands {Li}. This process is carried out iteratively until a
proper common consensus is attained on the usage of the available capacity for
all customers, through each customer’s individual decision. Once the common
consensus is reached, the power source can provide the corresponding power
accordingly. Thus, the interactions between the customers is modeled as a game,
detailed presently.

3 Modeling and Analysis of the Game

The distributed decision-making problem can be formulated as a game denoted
by G = [I, {di}i∈I , {Ui}i∈I ], where:

– I is the set of customers with shiftable loads {1, 2, 3, ....N}, with any specific
customer being indexed by i.

– {di} is the set of decision actions taken by the customers, i.e., D =
{d1, d2, ..., dN}, where di ∈ D is the decision/action of customer i. Decision
di = 0 represents the event that customer i does not turn on his load, while
di = 1 represents the condition when customer i does turn it on.

– {Ui}i∈I is the utility function of user i, and can be expressed in terms of CSL

as in Eq. (2):

Ui(di,d−i) =

⎧
⎨

⎩

1
Lidi+

∑
j∈I\i Ljdj+CSL

, CSL < Lidi +
∑

j∈I\i Ljdj ,

1
CSL−Lidi−

∑
j∈I\i Ljdj

, CSL ≥ Lidi +
∑

j∈I\i Ljdj ,
(2)

where d−i denotes the set of decisions taken by users other than user i.

The utility function of an individual user is defined from the perspective of the
overall system. More specifically, it is beneficial for a user if the sum of the loads
based on the current decision of all the users approaches CSL from the left,
i.e., whenever the value approaches CSL although it is less than or equal to it.
Otherwise, the value of the utility function of each user is reduced.

The formulated game is an exact Potential Game [8] and the reasons are as
follows: According to the definition of a Potential Game, the payoff of any player

1 If ∃i, s.t. Li > CSL, our solution is applicable by excluding the users whose demands
exceed the capacity. Thus, we will not elaborate on this scenario in any greater detail.
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by changing its strategy can be expressed using a single global function, i.e., a
so-called potential function. In this particular game, the utility function for each
player is defined as a global function, which can be considered to be the potential
function itself. Therefore, this game is indeed a Potential Game. Understandably,
this game is an exact Potential Game because if a player switches from one action
(decision) to another, the change in the potential equals to the change in the
utility of that player [8]. From the properties of Potential Games, we see that
the game has at least one pure strategy Nash Equilibrium (NE) point. The fact
that a global optimal point of the problem is a NE point of the game, and vice
versa, is proven in [13]. Also, as a global optimal point, it is obvious that any
unilateral change of decision of any user at the point will result in a decrease in
the utility function.

4 Implementation of LA in Demand Scheduling

In our design, the users improve their decisions based on the rewards/penalties
received for the decisions they made in previous iterations, and after sufficient
number of iterations, users will, hopefully, converge to the NE point, which is
the globally optimal solution of the problem.

4.1 Decisions of Users and Their Effects on Total Load

We invoke a typical working scenario for a LA [9]. It consists of a sequence
of interaction cycles between the LA and its environment. In each iteration,
the LA selects an action (αi), which is either rewarded (R = 1) or penalized
(R = 0) by the environment as a response. The most difficult part of designing
a LA-based solution for a new application domain is that of determining what
the “Environment” is, and then of knowing how the LA itself is “Rewarded” or
“Penalized”.

In our specific SG-based domain, since a users’ decision di is either 0 and 1,
the load for this user will be either 0 or Li respectively, and so the total load “LT ”
can be calculated by summing up these individual contributions in each iteration.
Every iteration yields a new value of LT . The decision-making process will go
through an iterative process so that “LT ” will approach the global optimal CSL.
To capture the number of iterations, we denote a new index, s ∈ {1, 2, ...,M}
for the number of iterations, where M is the maximum number of iterations
permitted. Correspondingly, the decision of user i at the iteration s is denoted
by di(s), i ∈ {1, 2, ...., N}. Similarly, we denote LT (s) as the current value of the
total of the load values at iteration s. Obviously, the value of LT (s) differs as
the values of the decisions {di(s)} change. As the aim of the game is to achieve a
value that is as close as possible to CSL after every iteration, our task is to define
the current Reward/Penalty so as to guide the users’ decision-making process
towards the optimal point.
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4.2 Calculation of Reward and Penalty

We shall now consider the intricate problem of determining when the LA should
be rewarded or penalized. In order to reach the closest possible value of CSL, it
is beneficial if the value of LT (s) approaches CSL but, at the same time, that it
is less than or equal to CSL, as the iterations proceed. In this case, a Reward is
applied to all the users. Otherwise, a Penalty is applied (i.e., when LT (s) is either
greater than CSL, or less than the previous value LT (s − 1)). The procedure for
deciding on a Reward/Penalty is formally outlined in Algorithm 1.

Algorithm 1. Reward/Penalty Assignments
Input:

– The loads of all the users and their decisions, {di(s)} at a time instant, s

Output:

– The assignment of a Reward or a Penalty to all users at the time instant, s

1: begin
2: for every user i do
3: Calculate LT (s) =

∑N
i=1 di(s)Li based on the information obtained from

other users
4: if LT (s) ≤ CSL and LT (s) ≥ LT (s − 1) then
5: Decision di(s) leads to a Reward to user i
6: else
7: Decision di(s) leads to a Penalty to user i
8: end if
9: end for

10: end

Algorithm 1 is carried out for every decision-making iteration and stopped
when the decision-making process ends. This termination phase will be discussed
presently. Note that by embarking on this mutual information sharing, each user
will be able to individually calculate the Reward or Penalty that he receives.

4.3 Decision Making on the Actions in the Iteration

Once the Reward/Penalty for each user has been assigned, we need to specify a
learning scheme for deciding the action (0 or 1) that he has to make in the next
iteration. As mentioned earlier, in this work, we opt to use LA to achieve this, and
in this regard, we select three well-established LA to do this learning, namely,
the Linear Reward-Inaction (LRI) scheme [9], the Coordination-game Learn-
ing Automata (CLA) [7], and the more-recently introduced Bayesian Learning
Automata (BLA) [5]. The details of the relevant steps for each of these schemes
are included in the formal algorithms described in [13], and omitted here in the
interest of space.
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Decision Making for the LRI. The way the decisions are made for the LRI
scheme is straightforward. The action that each LA makes is based on the action
selection probability. Each LA maintains two parameters p0 and p1 representing
the probability of selecting 0 and 1 respectively, with p0 + p1 = 1. The quan-
tities are initialized to 0.5. If the chosen action (either 0 or 1) is rewarded, the
probability of the alternate action (p1 or p0 respectively) is decreased using a
user-defined parameter, λ, and thus the probability associated with the chosen
action is increased. The LA keeps the action probabilities unchanged in the case
of a penalty feedback. The actual decision for scheduling communicated to the
SG’s power provider will occur after a final decision is attained by the LA-based
scheme.

Decision Making for the CLA. The CLA is similar to the LRI since it
involves the action probabilities and a learning parameter (denoted by λ), whose
value affects the convergence speed and the proximity of the final solution to the
optimal point. The CLA-based scheme is different from the LRI (and the BLA)
due to the fact that it explicitly uses a continuous utility function in the update
equation. It is based on the work of Mason on LA with a continuous feedback
response [7]. In our particular problem, we need a normalization of the values of
the utility to ensure that the feedback is in the interval [0, 1] [7].

Using such a mapping and updating rule, it is possible to prove that the CLA
will converge to the pure equilibrium with a probability that approaches unity,
as the update parameter is made arbitrarily small. This is a consequence of the
work due to Sastry et al. [12] since the NE of our Potential Game corresponds to
the mode of the payoff matrix. Again, the actual decision communicated to the
SG’s power provider will occur after a final decision is attained by the CLA-based
scheme.

BLA Based Decision Making Process. In the BLA-based scheme, each LA
maintains two hyper-parameters ai,j and bi,j . These are introduced to count
the number of rewards and penalties respectively, where index i is the index of
the user and j ∈ {0, 1} denotes the decisions that the LA has made. In each
iteration, the LA makes a decision about the choice of the action. Thereafter,
the value of ai,j is increased if the decision leads to a reward, and the value of
bi,j is increased if the decision leads to a penalty, as shown in Table 1.

Table 1. The effect of the Reward/Penalty responses on the BLA’s decision (for user
i at iteration s) on its parameters.

di(s) = 1 di(s) = 0

Reward ai,1 = ai,1 + 1 ai,0 = ai,0 + 1

Penalty bi,1 = bi,1 + 1 bi,0 = bi,0 + 1
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5 Simulation and Experimental Results

To evaluate the performance of the LA-based schemes, we carried out simulations
on numerous SGs, where the number of users and the parameters were varied.
However, in the interest of brevity and space, we merely cite the results obtained
from a subset of these experiments2. The experiments were conducted to capture
two important metrics, i.e., the accuracy of the convergence and the speed of
the convergence.

5.1 The Data Sets

The simulation configuration was derived based on the real-life measurements of
the electricity consumption for 28 domestic users [2,10,15], as shown in Table 2.

Table 2. This table lists the demands of 28 user (in KWh) used in our experiments.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

242 146 131 111 97 95 92 82 75 74 74 74 71 59

L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L26 L27 L28

57 55 51 49 42 41 39 37 35 35 31 15 11 11

A word about how the data in Table 2 was obtained is not out of place.
Specifically, the annual power consumption in [15] was converted to yield the
average consumption for every 15 min timespan [2] considering the scheduling
interval in real life. Half of these customers’ demands were considered as shiftable
loads [10]. In our simulation, we considered the scenario where only a subset
of all the users could be selected for the given capacity, i.e., 0 < CSL <

∑
Li.

Although the shiftable capacity of the SG and the shiftable demands were subject
to change due to various reasons [1], without loss of generality, we assumed that
the capacity of the shiftable load, CSL, was about 70% of the total demand for
the shiftable load.

5.2 Average Convergence Characterisitics

To illustrate the average number of iterations before convergence and the average
value of the total selected power demands, we present the simulation results of
the experiments in Tables 3 and 4. Table 3 illustrates the simulation results with
all 28 users while Table 4 summarizes the results when the last 15 users in Table 2
are used. All the results presented in these tables are averaged values of over an
ensemble of 400 independent replications. For the cases of the CLA and the LRI,
2 Additional results can be seen from the technical report of the First Author, and

can be made available on request.
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the results are illustrated for different values of λ. As opposed to this, since the
BLA does not depend on any parameter, the results for the BLA are presented,
in those tables, in a single line.

Table 3. Simulation results from the BLA and LRI-based algorithms with i = 28 and
CSL = 1352 KWh.

Method Sum of selected loads Iterations

BLA 1351.998 20306

LRI CLA LRI CLA

λ = 0.03 1352.000 1352.000 136737 141411

λ = 0.05 1352.000 1352.000 60045 61853

λ = 0.08 1352.000 1352.000 25690 26986

λ = 0.10 1352.000 1352.000 16906 17863

λ = 0.12 1352.000 1352.000 11458 12231

λ = 0.14 1352.000 1352.000 7797 8460

λ = 0.16 1351.998 1352.000 5391 6409

λ = 0.17 1351.998 1351.998 4772 5333

λ = 0.2 1351.946 1351.988 2933 3417

λ = 0.3 1349.608 1351.408 581 911

λ = 0.4 1335.400 1348.530 181 300

λ = 0.5 1289.444 1342.843 92 135

The performances of the LRI and the CLA depend fundamentally on the
value of the LA’s parameter, λ. With a sufficiently small value for λ, the algo-
rithms can converge to the NE point with high precision at a cost of executing
a large number of iterations. Of course, the number of iteration is smaller when
λ is relative large, but the convergence accuracy is compromised. If we compare
the λ-dependent schemes (i.e., the CLA and the LRI) with the BLA-based algo-
rithms, the number of iterations for the former were smaller than that for the
latter, i.e., if the average value of the selected loads was almost identical. For
example, when λ = 0.16 for i = 15, the average load was 299.917 after 1,010
iterations for LRI, and 299.947 after 1,142 iterations for the CLA. As opposed
to this, the BLA yielded a lower load value of 299.872 after 1,101 iterations.
Interestingly, the traditional age-old LRI with λ = 0.16 was superior to the CLA
and the BLA in such a configuration. Similarly, when i = 28, both the CLA and
the LRI with the parametric setting of λ = 0.17 yielded a better performance
than the BLA. Comparing the λ-dependent schemes, arguably the LRI yielded
a slightly better performance than the CLA in most cases, as the CLA needed
more iterations to converge.

Although, as demonstrated by the results presented in the tables, compar-
atively smaller values of λ led to a superior performance for the LRI and the
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Table 4. Simulation results from the BLA and LRI-based algorithms with i = 15 and
CSL = 300KWh.

Method Sum of selected loads Iterations

BLA 299.872 1101

LRI CLA LRI CLA

λ = 0.06 300.000 300.000 5764 6082

λ = 0.08 300.000 300.000 3763 3767

λ = 0.09 300.000 300.000 3056 3148

λ = 0.10 299.997 299.997 2630 2537

λ = 0.12 299.985 299.995 1772 1930

λ = 0.14 299.975 299.975 1357 1496

λ = 0.16 299.917 299.947 1010 1142

λ = 0.2 299.785 299.722 613 612

λ = 0.3 298.215 298.347 223 222

λ = 0.4 294.497 294.882 114 113

λ = 0.5 285.892 289.745 76 78

CLA, than for the BLA, the λ values could be quite different depending on the
system’s configurations. Consequently, the issue of determining the ideal value
of λ was mandatory for a certain system configuration, whenever the LRI or the
CLA was applied. However, the BLA-based approach did not require the setting
of any a priori configurations, which renders it to be a more practical option in
this application domain.

6 Conclusions

In this work, we have studied the problem of the scheduling of loads for domestic
users in Smart Grids (SGs) in a distributed manner. This load scheduling prob-
lem is NP-Hard, and the distributed scheduling process is formulated as an exact
Potential Game that has at least one pure strategy NE point. We proposed a
LA-based algorithm which utilized three distinct LA alternatives, i.e., the LRI,
the CLA and the BLA. Each of the multiple users utilized a LA to achieve the
decision making process, and to thus solve the problem in a distributed manner.
The simulations results show that the proposed approaches converge to a solu-
tion close to the NE point of the game, which is also the global optimal point.
The convergence of all the schemes is comparable.
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